Inorganic and Bioinorganic Solvent Exchange Mechanisms

Lothar Helm^{*} and André E. Merbach^{*}

Laboratoire de chimie inorganique et bioinorganique, Ecole polytechnique fédérale de Lausanne, EPFL-BCH, CH-1015 Lausanne, Switzerland

Received September 24, 2004

Contents

1. Introduction

1.1. Scope of This Review

The simplest reaction on a metal ion in aqueous or nonaqueous solution is the exchange of a solvent molecule between the first and second coordination

shells (eq 1). This reaction is fundamental in under-

$$
[\text{M(solvent)}_n]^{z+} + n(\text{solvent}^*) \stackrel{k_{\text{ex}}}{\Longleftrightarrow}
$$

$$
[\text{M(solvent}^*)_n]^{z+} + n(\text{solvent}) \tag{1}
$$

standing not only the reactivity of metal ions in chemical and biological systems but also the interaction between the metal ion and the solvent molecule. The replacement of a solvent molecule from the first coordination shell represents an important step in complex-formation reactions of metal cations and in many redox processes.1

In solvent exchange reactions there is no net reaction and the Gibbs free energy change, ∆*G*°, of the reaction is zero because the reagents and the products are identical. The measured rates of solvent exchange vary extensively with the nature of the metal ion and, to a lesser extend, with that of the solvent. Figure 1 shows that $k_{\text{H}_2\text{O}}$, the exchange rate constant for water molecules, covers nearly 20 orders of magnitude. A water molecule stays, in mean, nearly 300 years $(9 \times 10^9 \text{ s at } 298 \text{ K})$ in the first coordination shell of $[\text{Ir}(H_2O)_6]^{3+}$ (ref 2) before it is replaced by another one coming from bulk solvent. The mean lifetime of H_2O bound to $[Eu(H_2O)_7]^{2+}$ is, however, only about 200 ps $(2 \times 10^{-10} \text{ s at } 298 \text{ K})^{3,4}$ Astonishingly, both exchange processes follow an

Figure 1. Mean lifetimes, $\tau_{\text{H}_2\text{O}}$, of a particular water molecule in the first coordination shell of a given metal ion and the corresponding water exchange rate k_{H_2O} at 298 K. The filled bars indicate directly determined values, and the empty bars indicate values deduced from ligand substitution studies.

^{*} Corresponding authors. L.H.: e-mail, lothar.helm@epfl.ch; telephone, 0041 21 693 9876; fax, 0041 21 693 9875. A.E.M.: e-mail, andre.merbach@epfl.ch; telephone, 0041 21 693 9871; fax, 0041 21 693 9875.

Lothar Helm was born in Gernsbach (Germany) in 1952. He studied physics at the University of Karlsruhe (Germany) and obtained his diploma degree in 1977. He remained in Karlsruhe for his Ph.D. research with Prof. H. G. Hertz and received his degree in physical chemistry in 1980. In 1980 he joined the laboratories of Prof. André Merbach at the University of Lausanne, Switzerland. From 1983 to 2001 he was maître d'enseignement et de recherche at the Faculty of Science of the University of Lausanne. In 2001 he moved, together with the whole chemistry department, from the University of Lausanne to the Ecole Polytechnique Fédérale de Lausanne (EPFL). His main research interest is in the study of reaction mechanisms in coordination chemistry using multinuclear and high-pressure NMR and computer simulation techniques.

Originating from Pully (Switzerland), André E. Merbach was born in 1940. He studied at the Polytechnical School of the University of Lausanne and obtained a degree in chemical engineering in 1962. In 1964, he was awarded his Ph.D. in inorganic chemistry from the University of Lausanne. He then had a Postdoctoral Fellowship in the Lawrence Radiation Laboratory at the University of California, Berkeley, where he studied the ionization of strong electrolytes by NMR. Upon his return, in 1965, to the Institute of Inorganic and Analytical Chemistry at the University of Lausanne, he accepted a teaching and research position in coordination chemistry. In 1973, the Swiss Chemical Society awarded him the Werner Prize and Medal for his work studying the structure, the stability, and the dynamics of metal halogen adducts by NMR and he was nominated Professor in Inorganic and Analytical Chemistry. He was a member of the Research Council of the NSF (1985−1996) and has chaired the European Technical Committee (COST) for chemical research (1998− 2000). He organized the XXIXth International Conference in Coordination Chemistry (ICCC) in Lausanne in 1992. He was awarded an honorary doctorate (Honoris Causa) from the University of Lajos Kossuth in Debrecen (Hungary) in 1993 for his work on elucidating reaction mechanisms in coordination chemistry utilizing high-pressure NMR and from the University of Geneva in 2003. He was called at the presidency of the Swiss Chemical Society (2001−2004). Since 2001 he has been Professor of inorganic chemistry at EPFL.

associative activation mode, which means that for both hydration complexes the transition state or intermediate encountered during the exchange reaction has an increased coordination number.

Figure 2. Ranges of solvent exchange rate constants, *k*ex, with respect to that of water, $k_{\text{H}_2\text{O}}$, for selected divalent transition metal ions (from Table 5).

The dependence on solvents is, however, less pronounced, as shown in different reviews.5,6 Figure 2 shows the ranges of solvent exchange rate constants with respect to water for four divalent d-transition metal ions. Even if the range for $Ni²⁺$ spans nearly 6 orders of magnitude, the discussion of solvent exchange is most conveniently divided into categories of metal ions. A first category is formed by ions of main group elements. These ions have filled electron shells, and they differ mainly in electric charge and ionic radius. The number of solvent molecules in the first shell around the ion, commonly called the coordination number, CN, ranges from 4 up to 10.7 A second category is formed by the d-transition metal ions, which are, in general, hexacoordinated, with the exception of Pd^{2+} and Pt^{2+} , which are four-coordinated (square planar), $\mathrm{Sc^{3+}}$, which is suggested to be coordinated by seven water molecules,⁸ and Cu^{2+} , where there is some evidence that the aqua ion could be five-coordinated.9 The solvent exchange rate constants of d-transition metal ions are strongly influenced by the occupancy of the d-orbitals. A third category involves the f-shell ions, which have coordination numbers ranging from six for bulky nonaqueous solvents to eight or nine for water molecules. Their kinetic behavior is mainly influenced by the decrease in ionic radius along the series and by the coordination equilibrium observed along the series.

Replacing some of the first shell water molecules by one or more ligands, which are kinetically inert, can have a strong influence on the rate and the mechanism of exchange of the remaining solvent molecule(s). Metal ion complexes still having one or more solvent molecules directly bound are important in catalysis,¹⁰ as active centers in biomolecules,¹¹ and, in the special case of gadolinium(III), as contrast agents in medical magnetic resonance imaging.12

Solvent exchange reactions have been reviewed several times in the last few years. Lincoln and Merbach published in 1995 a comprehensive review of substitution reactions of solvated metal ions.⁵ A follow-up of this review concentrating on solvent exchange was published in $2003⁶$. The use of high pressure to elucidate mechanisms of water exchange reactions has been treated in a book chapter published in 2002.13 This review is a comprehensive compilation of solvent exchange rate constants and reaction mechanisms for solvated metal ions in solution and for metal ion complexes with one or several solvent molecules in the first coordination sphere. Research on contrast agents for medical magnetic resonance imaging (MRI) has led to an important field of fundamental and applied research in bioinorganic chemistry.12 We therefore include a special section on water exchange on lanthanides, mainly gadolinium, complexes.

1.2. Classification of Exchange Mechanisms

Langford and Gray proposed in 1965¹⁴ a mechanistic classification for ligand substitution reactions, which is now generally accepted and summarized here for convenience. In their classification, they divided ligand substitution reactions into three categories of *stoichiometric mechanisms*: associative (**A**), where an intermediate of increased coordination number can be detected, dissociative (**D**), where an intermediate of reduced coordination number can be detected, and interchange (**I**), where there is no kinetically detectable intermediate. Langford and Gray furthermore distinguished two categories of *intimate mechanisms*: those with an associative activation mode (**a**) and those with a dissociative activation mode (**d**). In the first case the reaction rate is sensitive to the nature of the entering group, whereas in the second case the reaction rate is not sensitive to the variation of the entering group (Figure 3). All **A** mechanisms must be associatively activated, and all **D** mechanisms must be dissociatively activated. The interchange mechanisms (**I**) include a continuous spectrum of transition states where the degree of bond making between the entering ligand and the complex ranges from very substantial (**Ia** mechanism) to negligible (**Id** mechanism) and inversely for bond breaking.15,16 For a solvent exchange reaction, the forward and backward reaction coordinates must be symmetrical. For an **Ia** mechanism, both the entering and the leaving solvent molecule must have considerable bonding to the metal ion at the transition state. Inversely, for an I_d mechanism with weak bond making to the entering solvent molecule, the leaving one is also weakly bound.

The assignment of a substitution reaction mechanism is mainly based on the response of the reaction

	evidence for an inter- mediate of lower coordination number	no evidence for an intermediate	evidence for an inter- mediate of higher coordination number	
stoichiometric mechanism	D			А
intimate mechanism	D	ı,	l _a	
sensitivity of rate to nature of entering group	rate independent of nature of entering group			rate dependent of nature of entering group

Figure 3. Classification of substitution reactions.

Table 1. Evolution with Time of Exchange Rate Constants and Activation Parameters*^a* **for** $[Ni(CH_3CN)_6]^{2+}$ in CH₃CN Determined by ¹H and ¹⁴N **NMR***^a*

year	$10^{-3}k_1$ (298K)	$\wedge H^\ddagger$	ΛS^*	$\Lambda V^{\! \ast}$	nucleus	ref
1967	2.8	49	-15		1H	18
1967	3.9	46	-37		¹ H	19
1967	2.1	49	-16		1 H	20
1971	2.9	67	$+43$		¹ H	21
1971	3.0	63.2	$+41.8$		14 _N	21
1973	2.0	68	$+50$		^{14}N	22
1973	3.6	60	$+23$		1H	22
1973	14.5	39.5	-32.6		^{14}N	23
1979	2.9	64.6	$+37.9$	$+9.6$	¹ H	24
1980	3.1	60.8	$+25.8$	$+6.3$	14 _N	25
1989	6.2	41.4	-30	$+12.0$	^{14}N	26
	${\rm K}^{-1}$ mol ⁻¹ ; $\Delta V^{\! +}$, cm ³ mol ⁻¹ .				^{<i>a</i>} Units are as follows: $k_1(298K)$, s ⁻¹ ; ΔH^{\ddagger} , kJ mol ⁻¹ ; ΔS^{\ddagger} , J	

rate to the variation of chemical and physical parameters such as the nature and concentration of the entering ligand, temperature, and pressure. The rate law for solvent exchange reactions can be determined using an inert diluent, 17 a technique which is often used for nonaqueous solvents but which cannot be used for water due to the lack of an adequate diluent. The variation of the enthalpy and entropy of activation, ΔH^{\ddagger} and ΔS^{\ddagger} , respectively, obtained from variable temperature experiments, within a series of similar ligand substitution systems can give a guide to a mechanistic change. Thus **d**-activated reactions tend to have greater ΔH^* values than do **a**-activated reactions, and ΔS^* tends to be positive for **d**-activated reactions and negative for **a**-activated reactions. However, the magnitudes of the contributions to these two parameters arising from interactions that occur beyond the first coordination shell can be uncertain and the determination of ΔS^{\dagger} is often prone to systematic errors, especially if the temperature range for experimental determination of *k*ex is small. Table 1 shows how ΔS^* has evolved with time and experimental method from -37 to $+50$ J mol⁻¹ K⁻¹ for the same reaction.

The pressure dependence of the exchange rate constant leads to the activation volume, ΔV^{\ddagger} , which has become the major tool for the experimental determination of solvent exchange mechanisms.^{16,27-30} This is mainly due to the direct connection between the sign of ΔV^* and the intimate mechanism for solvent exchange.

The volume of activation, ΔV^{\ddagger} , is defined as the difference between the partial molar volumes of the transition state for the reaction and the reactants and is related to the pressure variation of the rate constant at a constant temperature *T* by eq 2^{31-33}

$$
\left(\frac{\partial \ln (k)}{\partial P}\right)_T = -\frac{\Delta V^{\dagger}}{RT} \tag{2}
$$

An approximate solution of the above differential equation (eq 2) is eq 3:

$$
\ln\left(\frac{k_P}{k_0}\right) = -\frac{\Delta V_0^{\dagger}P}{RT} + \frac{\Delta \beta^{\dagger}P^2}{2RT}
$$
 (3)

**Table 2. Volume Changes −∆V[‡]elec (in cm³ mol⁻¹)
Arising from Creation of an Electric Charge, a l Arising from Creation of an Electric Charge, a Dipole Moment, or a Quadrupole Moment in Different Solvents31,35**

		$-\Delta V^{\dagger}_{elec}$ from	
solvent	charge ^a	dipole moment ^{b}	quadrupole moment ^c
water	1.3	1.8	1.4
methanol	4	6	4
acetone	7	10	7
benzene	27	39	28
$C \, \text{m}^2$.			^{<i>a</i>} 1e = 1.6 × 10 ⁻¹⁹ C, ^b 10 D = 33 × 10 ⁻³⁰ C m, ^c 6.4 × 10 ⁻³⁹

where k_P and k_Q are the rate constants at pressures *P* and 0, respectively, ΔV_0^{\dagger} is the activation volume at $P = 0$, and $\Delta \beta^*$ is the compressibility coefficient of activation.33 For exchange reactions with water, a highly electrostricted solvent, the quadratic term in eq 2 is small compared to the linear one for pressures generally applied in kinetic studies (typically 0-²⁰⁰ MPa), and therefore, in aqueous solution $\Delta V^{\dagger} \cong$ $\Delta V_0^{\pm,34}$

The interpretation of the activation volume for solvent exchange reactions on metal ions is based on the transition state theory.^{31,32} The experimentally determined activation volume is considered to be the sum of an intrinsic contribution, $\Delta V^{\ddagger}_{int}$, and a solvent contribution, $\Delta V^{\ddagger}_{solv.}^{33-35}$ The intrinsic activation volume results from changes in internuclear distances and angles within the reactants during the formation of the transition state and can therefore be used in assignment of reaction mechanisms. The volume changes due to solvent effects are usually associated with electrostriction, which means the very strong electrostatic forces of attraction exerted by charges or electric dipole and quadrupole moments on surrounding solvent molecules. More precisely, ΔV [‡]_{solv} arises from changes in the electrostriction between the transition state and the reactants and can be important for substitution reactions when ions or electric dipoles (or even quadrupoles) are formed or neutralized at the transition state (Table 2). For solvent exchange processes, where the charge of the complex does not change, $\Delta V^{\dagger}_{solv}$ is small and $\Delta V^{\dagger} \approx \Delta V^{\dagger}_{sav}$. Therefore, the measured activation volume is ΔV [‡]_{*int*}. Therefore, the measured activation volume is a direct measure of the degree of bond formation and bond breaking on going to the transition state.

Figure 4 visualizes the pressure induced changes of the measured exchange rate constants and the underlying solvent exchange reaction mechanism. In a **d**-activated exchange process, the approach to the transition state is characterized mainly by *bond breaking* and results in an increase in volume, which means a decrease in the observed reaction rate constant, k_P (eq 2). In an **a**-activated exchange process, however, the approach to the transition state is characterized mainly by *bond formation* and results in a decrease in volume, which means an increase in k_P . Briefly, $\Delta V^* > 0$ is indicative of dissociatively activated processes, and ΔV^* < 0 is indicative of associatively activated processes. However, it is less easy to decide on the basis of activation volumes if the mechanism is a limiting associative mechanism, **A (**or dissociative, **D)**, or an interchange

Figure 4. Solvent exchange processes: volume profiles connected to the transition states.

with a relatively strong contribution of the entering solvent molecule, **Ia** (or with a negligible contribution of the entering solvent molecule, I_d). The absolute value of the activation volume, $|\Delta V^{\dagger}|$, can serve as a guideline: the larger $|\Delta V^{\dagger}|$, the closer the mechanism is to a limiting **A** or **D**. For octahedral 3d metal transition ions in water, Swaddle 36,37 developed a semiempirical model to estimate the limiting volumes by linking the partial molar volumes of hydrated metal ions to their ionic radii, r_M . Following Shannon,³⁸ r_M values for a specific metal depend on the charge of the ion and on its coordination number. Swaddle's model gives similar limiting values of |∆*V*[†]| $= 13.5$ cm³ mol⁻¹ for **A** and **D** processes on $+2$ and +3 octahedral 3d-transition metal ions. Exceptions to this guideline are, however, observed, and therefore, each case has to be considered individually.

1.3. Experimental Methods

Only a few experimental techniques allow us to measure solvent exchange rate constants directly. The measurement of solvent exchange rates in solution is today almost exclusively performed by NMR, which itself offers a variety of different methods, such as line shape analysis, methods based on relaxation time measurements, or methods based on isotopic labeling.39,40

As mentioned above, the pressure dependence of the exchange rate constant has become the major tool for the experimental determination of solvent exchange mechanisms. Consequently, high-pressure, high-resolution NMR probes were developed which allow the application of the variety of NMR techniques to pressures up to several hundreds of megapascals.40-⁴³

2. Solvent Exchange on Main Group Metal Ions

Main group metal ions are diamagnetic, which limits the possibility to study solvent exchange by NMR to only a few di- and trivalent ions: Be^{2+} , Mg^{2+} , Al^{3+} , Ga^{3+} , and In^{3+} . All other ions are too labile, due to the low surface charge density and the absence of ligand field stabilization effects.

The technique of high-resolution incoherent quasielastic neutron scattering (IQENS) can be used to get information on water-proton binding times in concentrated aqueous ionic solutions. The observation time scale ($\tau_{obs} \sim 10^{-9}$ s) of the IQENS method is long enough for Fick's law of translational diffusion to apply but is short enough, when compared with the cation to solvent-proton binding time in some divalent and trivalent metal ion solutions, for two distinct proton populations to be observed.⁴⁴ Limits of water-proton binding times obtained by IQENS are given in Figure 5.

Figure 5. Ion-water proton binding times, τ_i , obtained from IQUENS experiments on concentrated aqueous ionic solution at ∼298 K.45

2.1. Divalent Main Group Metal Ions

The only divalent main group ions where solvent exchange rates and mechanisms are experimentally available are Be^{2+} and Mg^{2+} . Be^{2+} forms predominantly tetrahedral complexes, whereas Mg^{2+} is in general hexacoordinated.

Beryllium(II) is the smallest metal ion $(r = 27 \text{ pm})$ and is the only one where solvent exchange on tetrahedral complexes could be studied in a dozen solvents (Table 3). The general rate law for solvent exchange on $[Be(solvent)_4]^{2+}$ can be expressed as given in eq 4.

$$
k_{obs} = k_1 + k_2 \text{[solvent]} \tag{4}
$$

 k_1 and k_2 typify **d**- and **a**-activated pathways, respectively. For solvent exchange on Be^{2+} in nonaqueous solvents, the bulkiness of solvent molecules becomes an important parameter for solvent exchange mechanisms. A crossover from **a**- to **d**activation is observed as the steric hindrance at the metal center increases with increasing size of the solvent molecules. For the small solvents DMSO, TMP, DMMP, and MMPP, the second-order term, k_2 , dominates and either an **A** or an **Ia** mechanism

Table 3. Rate Constants and Activation Parameters for Solvent Exchange on Alkaline Earth Ions*^f*

	k ₁	\mathbb{k}_2					
solvent	$(298K)^a$	$(298K)^a$	$\Delta H^{\scriptscriptstyle \pm}$	ΔS^{\ddagger}	$\Delta V^{\! \ast}$	mech ref	
		$[Be(solvent)_4]^{2+}$					
H_2O^b	730	13.2 ^c	59.2	$+8.4$	-13.6 A		17
DMSO ^d		213	35.0	-83.0		-2.5 A , I _a	17
		140	51.1	-32.3		A, I_a	46
TMP^d		4.2	43.5	-87.1		-4.1 A , I_a	17
		1.5	56.0	-54.0		A, I_a	47
DMMP ^d		0.81	60.2	-44.4		A, I_a	47
MMPP ^d		0.22	68.7	-26.1		A, I_a	48
DMF^d		16	52.0	-47.5	-3.1	A, I_a	17
	0.2		74.9	-7.3		D	17
		8.5	58.1	-32.0		A, I_a	49
	0.1		83.6	$+16.3$		D	49
NMA ^d		0.32	76.8	$+3.1$		A, I_a	49
	0.23		71.5	-17.3		D	49
DMA ^d		0.34	66.7	-30.1		A, I_a	49
	0.38		56.9	-62.1		D	49
DEA ^d		0.59	68.5	-19.6		A, I_a	48
	0.044		76.4	-14.6		D	48
DMADMP ^d	0.0073		89.1	$+12.6$		D	47
TMU^d	1.0		79.6	$+22.3$	$+10.5$	D	17
	1.4		77.1	$+16.4$		D	46
DMPU^d	0.1		92.6	$+47.5$	$+10.3$	D	17
		$[Mg(solvent)6]^{2+}$					
H_2O^b	6.7×10^5		49.1	$+31.1$	$+6.7$	\mathbf{D}, \mathbf{I}_d	50
$\mathrm{MeOH}{}^{b}$	4.7×10^3		69.9	$+59$		\mathbf{D}, \mathbf{I}_d	51
EtOH ^b	2.8×10^6		74.1	$+126$		D, I_d	52
DMF^d	4.3×10^{5}		54.8	$+46.8$	$+8.5$	$\mathbf{D}, \mathbf{I}_{d}$	53
DMF ^e	6.2×10^6		77.8	$+146$		\mathbf{D}, \mathbf{I}_d	54
TMP^e	7.4×10^{5}		51.3	$+39.5$		D, I_d	55

^a Rate constant for the exchange of a particular coordinated solvent molecule.⁵ *b* Neat solvent. ^{*c*} In kg mol⁻¹ s⁻¹, which $corresponds$ to $730 \text{ s}^{-1}/55.5 \text{ mol kg}^{-1}$. *d* In *d₃*-nitromethane diluent. *^e* In *d2*-dichloromethane diluent. *^f* Units are as follows: k_1 (298K), s⁻¹; k_2 (298K), dm³ mol⁻¹ s⁻¹; ΔH^* , kJ mol⁻¹; ΔS^* , J $\rm{K^{-1}}$ mol⁻¹; $\rm{\Delta}V^{\ddagger}$, cm³ mol⁻¹.

operates. Negative activation volumes (Table 3) measured for DMSO and TMP support this assignment. Both the k_1 and the k_2 terms apply for DMF, NMA, DMA, and DEA, consistent with a parallel operation of **d**- and **a**-activated mechanisms. For the most bulky solvents, DMADMP, TMU, and DMPU, a **D** mechanism dominates: only the k_1 term operates and the measured ΔV^{\dagger} values are very positive (Table 3).

Water exchange on $[Be(H_2O)_4]^{2+}$ is characterized by the very negative activation volume $\Delta V^* = -13.6$ $cm³$ mol⁻¹, which is close to the calculated limiting contribution for an **A** mechanism, $\Delta V_{lim}^{\dagger} = -12.9 \text{ cm}^3$ mol^{-1} , for 3d octahedral metal ions.¹⁷ This suggests the operation of a limiting **A** mechanism for the exchange of the very small H_2O molecule on Be^{2+} .

The hexacoordinated Mg^{2+} -solvate complexes are much more labile compared to the tetracoordinated Be^{2+} (Table 3). The rate laws determined in nonaqueous solvents are first order for all solvent exchange reactions on $[Mg(solvent)_6]^{2+}$, and activation volumes measured for $H₂O$ and DMF are positive. This indicates the operation of **d**-activated mechanisms.

2.2. Trivalent Main Group Metal Ions

The Al³⁺ ($r = 54$ pm), Ga³⁺ (62 pm), and In³⁺ (80 pm) ions are most conveniently discussed together

Table 4. Rate Constants and Activation Parameters for Solvent Exchange on Trivalent Main Group Ions*^d*

$[M(solvent)n]^{3+}$	$k_1(298K)^a$	$k_2(298K)^a$	ΔH^*	$\Delta S^{\scriptscriptstyle \ddag}$	$\Delta V^{\! \ast}$	mech	ref
			Al^{3+}				
$[Al(H2O)6]^{3+ b}$	1.29		84.7	$+41.6$	$+5.7$	\mathbf{I}_{d}	57
					$+5.6$ (ab initio)	D	58
$[AI(OH)(H_2O)_5]^{2+}$	3.1×10^{4}		36.4	-36.4			59
$[Al(F)(H_2O)_5]^{2+}$	1.1×10^{2}		79	$+60$			60
$[Al(F)(H_2O)_5]^{2+}$	2.3×10^2		$65\,$	$\rm +19$			61
$[A](F)_2(H_2O)_4$ ⁺	1.71×10^4		66	$+57$			61
$[Al(F)2(H2O)4]+$	1.96×10^4		69	$+70$			60
$[Al(C_2O_4)(H_2O)_4]$ ⁺	1.09×10^2		68.9	$+25.3$			$62\,$
$[Al(mMal)(H2O)4]+$	6.6×10^{2}		66	$+31\,$			63
$[Al(mMal)2(H2O)2]$ ⁻	6.9×10^3		55	$+12.8$			63
$[Al(ma)(H_2O)_4]^{2+}$	3.4×10^2		63	$+14$			64
$[Al(ma)2(H2O)2]+$	1.95×10^3		49	-19			64
$[Al(Sal)(H2O)4]+$	4.9×10^{3}		35	-57			65
$[Al(sSal)(H2O)4]+$	3.0×10^3		37	-54			65
$[AlO_4Al_{12}(OH)_{24}(H_2O)_{12}]^{7+}$	1.1×10^{3}		$53\,$	-7			66, 67
$[GeO_4Al_{12}(OH)_{24}(H_2O)_{12}]^{7+}$	2.3×10^2		63	29			68
$[GeO_4Al_{12}(OH)_{24}(H_2O)_{12}]^{8+}$	1.9×10^2		56	$20\,$			69
$[Al(DMSO)6]$ ^{3+ c}	0.30		82.6	$+22.3$	$+15.6$	D	70, 71
$[Al(DMF)_6]^{3+ c}$	0.05		88.3	$+28.4$	$+13.7$	\mathbf{D}	70, 71
$[Al(TMP)_6]^{3+ c}$	0.78		85.1	$+38.2$	$+22.5$	$\mathbf D$	15
$[Al(TMP)6]^{3+ c}$	0.38		98.3	$+76.1$		D	72
							$\sqrt{72}$
$[Al(DMMP)6]$ ^{3+ c}	5.1		79.5	$+33.0$		$\mathbf D$	
$[Al(HMPA)_4]^{3+ c}$		4.8×10^3	32.2	-42.7		$\mathbf A$	72
			Ga^{3+}				
$[Ga(H_2O)_6]^{3+ b}$	4.0×10^2		67.1	$+30.1$	$+5.0$	I_d	73
					$+4.8$ (ab initio)	D	58
$[Ga(OH)(H2O)5]^{2+}$	1×10^5		58.9		$+6.2$	$\mathbf{I}_{\mathbf{d}}$	73
$[Ga(DMSO)_6]^{3+ c}$	1.87		72.5	$+3.5$	$+13.1$	$\mathbf D$	70, 71
$[Ga(DMF)6]$ ^{3+ c}	1.72		85.1	$+45.1$	$+7.9$	$\mathbf D$	70, 71
$[Ga(TMP)_6]^{3+ c}$	6.4		76.5	$+27.0$	$+20.7$	$\mathbf D$	15
	$5.0\,$		87.9	$+63.2$		\mathbf{D}	74
			\mathbf{Sc}^{3+}				
$[Sc(TMP)_6]^{3+ b}$		1.2×10^2	37.4	-60.5	-20.1	A, I_a	75
$[Sc(TMP)_6]^{3+ c}$		38.4	21.2	-143.5	-18.7	A, I_a	15
$[\mathrm{Sc(TMP)_6}]^{3+~c}$		45.3	26.0	-126		A, I_a	76
$[Sc(DMMP)_6]^{3+ c}$		13.2	29.7	-124		A, I _a	$77\,$
$[Sc(TMU)6]$ ^{3+ c}	0.21		91.2	$+47.8$		D	78
			${\bf In}^{3+}$				
$[In(H2O)6]^{3+ b}$	4.0×10^{4}		19.2	-96		A, I_a	79
	$\geq 3\,\times\,10^4$				-5.2 (ab initio)	$\mathbf A$	58
$[In(TMP)_6]^{3+ c}$		7.6	32.8	-118	-21.4	A, I_a	15
$[In(TMP)_6]^{3+ c}$		$7.2\,$	35.6	-109		A, I_a	74

" Rate constant for the exchange of a particular coordinated solvent molecule.⁵ b Neat solvent. " In d_3 -nitromethane diluent. , kJ mol⁻¹; ∆*S*[‡], J K⁻¹ mol⁻¹; ∆*V*[‡], cm³ mol⁻¹.

with Sc^{3+} (75 pm), which also has a closed shell electronic configuration. These four ions together allow studying the influence of metal ion size on solvent exchange on octahedral trivalent metal ions. For the two smallest ions, Al^{3+} and Ga^{3+} , the solvent exchange follows a dissociative mechanism (firstorder rate law, positive activation volume), and the rate of exchange increases from Al^{3+} to Ga^{3+} , as expected, with the decrease of the surface charge density (Table 4). For the two larger, Sc^{3+} and In^{3+} , ions, an increase in coordination number becomes possible at the transition state and the solvent exchange mechanism becomes associative (secondorder rate law, negative activation volume). For TMP exchange on all four ions, the measured activation volumes $\text{(cm}^3 \text{ mol}^{-1})$ change from $+22.5 \text{ (Al}^{3+})$ and +20.7 (Ga³⁺) to -18.7 (Sc³⁺) and -21.4 (In³⁺). The thermodynamic reaction volume, ∆*V*, for the addition of one TMP molecule to $[Nd(TMP)_6]^{3+}$ (ionic radius of six coordinated Nd^{3+} ions = 98 pm)³⁸ has been measured by visible spectroscopy to be -23.8 cm^3

mol-1. ⁵⁶ This suggests the operation of limiting (or close to limiting) mechanisms for TMP exchange on these ions: **D** and **A**, respectively. The change of activation from **d**-activation for the small Al3⁺ and Ga^{3+} to **a**-activation for the larger In^{3+} and Sc^{3+} has been generalized for all solvents, including H_2O .

The water exchange mechanisms on the hexaaqua ions of Al^{3+} , Ga^{3+} , and In^{3+} in aqueous solution have been modeled using ab initio calculations at the Hartree-Fock level.⁵⁸ The calculations confirmed the change in activation mode and gave a closer insight on the relation between exchange mechanism and activation volume. To illustrate the interpretation of ΔV^{\ddagger} for H₂O exchange on aqueous $[M(H_2O)_6]^{z+}$, Swaddle used a square whose sides represent M-^X and M-Y bond order changes from 0 to 1 for a reaction $ML_nX + Y \rightarrow ML_nY + X$, scaled to the physical parameter volume (Figure 6). The scaling was done using a semiempirical description of the partial molar volume of a metal ion for a symmetrical $H₂O$ exchange reaction.⁵ The change of volume dur-

Figure 6. Interpretation of activation volumes for water exchange on hexaaqua metal ions in terms of contributions from bond making and bond breaking: (left) Swaddle's scaled More-O'Ferrall diagram assuming a continuum of interchange mechanisms; (right) calculated curves for Al^{3+} , Ga^{3+} , and In^{3+} using Connolly volumes.

ing the exchange reaction is given by the sum of the coordinates. Swaddle has argued 80 that all water exchange reactions should be regarded as having interchange, **I**, mechanisms, spanning a continuum in which the degree of bond making by the incoming solvent molecule ranges from very substantial to negligible. For an interchange mechanism, the transition state would necessarily lie on the dashed diagonal (Figure 6, left) and the measured activation volume would allow scaling of the volume curves for exchange reactions of different metal ions. It has been stressed that in this model the **A** and **D** mechanisms are considered as the limiting cases for the interchange mechanistic continuum and are therefore following the edges of the square diagram with "transition states/intermediates" located at the corners of the square diagram. If, however, intermediates with lower and higher coordination numbers can be identified, as, for example, by quantum mechanical calculations, a different view of the diagram has to be defined. For a mechanism where the exchange proceeds via a transition state and an intermediate, this latter lies on the diagonal, but not necessarily on the corner of the square. The two transition states lie symmetrically off the diagonal. The calculations performed on Al^{3+} , Ga^{3+} , and In^{3+} allowed us to draw such a diagram (Figure 6, right). 58 From the calculated volumes, it follows that for these ions the transition states are about halfway between the reactant and the intermediate. For a nonconcerted **A** or **D** mechanism, measured ΔV^* values can be quite far from the limiting values, estimated by Swaddle to be -13.5 or $+13.5$ cm³ mol^{-1,37} respectively.
The deprotonation of a water molecule

The deprotonation of a water molecule on $[M(H_2O)_6]^{3+}$ (M = Al, Ga) to form $[M(OH)(H_2O)_5]^{2+}$ increases the lability of the other water ligands substantially. This increase in lability is larger by 2 orders of magnitude for [Al(OH)(H₂O)₅]²⁺ (2.4 \times 10⁴ (s^{-1}) if compared to $[Ga(OH)(H_2O)_5]^{2+}$ $(2.5 \times 10^2 \text{ s}^{-1})$ (Table 4). For Al^{3+} the effect is among the largest measured for trivalent metal ions and even much larger than that for the isoelectronic $[AlF(H_2O)_5]^{2+}$ $(0.9 \times 10^2 \text{ s}^{-1})$ (Table 4).⁵⁹ For water exchange on

 $[Ga(OH)(H₂O)₅]^{2+}$ an activation volume could be determined which is more positive than that for the hexaaqua ion,57 indicating a more dissociative character of the water exchange reaction. For H_2O exchange on $[A(OH)(H_2O)_5]^{2+}$ there are no variable pressure data. But, despite the negative ∆*S*[‡] observed from variable temperature measurements,⁵⁹ a more dissociative character of the exchange process, if compared to the case of the aqua ion, is also expected.

Water exchange on Al^{3+} is also progressively enhanced by several orders of magnitude in substituting first shell water molecules by F-, malonate, methylmalonate, or salicylate (Table 4) and for H2O exchange on polycations.^{66-69,81,82}

3. Solvent Exchange on d-Transition Metal Ions

3.1. Hexasolvated d-Transition Metal Ions

In contrast to the cases of metal ions with closed shell electronic configurations, the lability and the exchange mechanisms of d-transition metal ions are strongly affected by the occupancy of their d-orbitals. The order of reactivity on divalent 3d-transition metal ions, for example, is $V^{2+} \le Ni^{2+} \le Co^{2+} \le Fe^{2+}$ $\rm \leq Mn^{2+} \leq Cu^{2+}$ and is independent of the mechanism. Simple calculations of ligand field activation energies, LFAEs, were performed already thirty years ago for **D** and **A** exchange mechanisms of $[M(H_2O)_6]^{2+73+}$ complexes.6,16,83 Correlations were found between LFAEs and water exchange rate constants but not for exchange mechanisms. The important influence of the ligand field activation energies is nicely demonstrated from the labilities of V^{2+} and V^{3+} . The smaller LFAE of $[V(H_2O)_6]^{3+}$ as compared to $[V(H_2O)_6]^{2+}$ explains why water exchange is about six times faster on the more highly charged trivalent vanadium.

In general, the solvent exchange rate constants on $[M(\text{solvent})_6]^{2/3+}$ increase in the sequence MeOH < $MeCN < DMF < H₂O$, independent of the nature of the transition metal ion. This sequence cannot be readily linked to solvent specific characteristics such

^{*a*} Rate constant for the exchange of a particular coordinated solvent molecule.⁵ ^b 0.02 M HClO₄ in d_2 -dichloromethane diluent. ^c Tetragonal distortion. ^d Average of +9.9, +6.7, and +7.7 cm³ mol⁻¹. ^e Units are as follows: $k_1(298K)$, s⁻¹; ΔH^{\ddagger} , kJ mol⁻¹; ΔS^{\ddagger} , J K^{-1} mol⁻¹; ΔV^* , cm³ mol⁻¹.

as size, dielectric constant, and donor number. It seems to depend on the combined effect of several such properties of the solvent.

3.1.1. Divalent First Row d-Transition Metal Ions

Solvent exchange on octahedral first row transition metals is by far the most extensively studied and has been reviewed several times. For small solvent molecules such as $H₂O$, MeOH, and MeCN, the mechanism for solvent exchange changes from **Ia** to **Id** as the number of d-electrons increases and the ionic radius decreases. This changeover of mechanism, manifested in a change of sign for the activation volumes (Table 5), has been explained with a combination of three effects: (a) the increase of the t_{2g} orbital occupancy disfavors the approach of the entering nucleophilic solvent molecule on a trigonal face of the octahedron in an **a**-activated mechanism; (b) e^*_{g} electron occupancy increases, which favors breaking of the metal-solvent bond in a **^d**-activated mechanism; and (c) to a lesser extent, the decrease of r_M favors dissociation over association due to steric crowding. $[V(\text{solvent})_6]^{2+}$ and $[Mn(\text{solvent})_6]^{2+}$ exchange first shell solvent molecules through an **a**-activated mechanism, while their Fe^{2+} , Co^{2+} , and Ni2⁺ analogues show **d**-activated mechanisms.

The effect of bulkiness of solvent molecules on exchange processes has been studied on Mn^{2+} (ref 97) and $Ni²⁺$ (ref 26) using the six nitriles MeCN, EtCN, PrCN, Pr*ⁱ* CN, PhCN, and Bu*^t* CN, listed here with increasing molar volumes, V_0 . The donor numbers of these solvent molecules differ only slightly (between 11.9 for PhCN and 16.6 for Bu^tCN ,⁹⁷ but V_0 increases from $52.9 \text{ cm}^3 \text{ mol}^{-1}$ for MeCN to $104.6 \text{ cm}^3 \text{ mol}^{-1}$ for Bu*^t* CN.26 The exchange rate constants for the six nitriles studied are very similar within the two series (Table 5). Positive activation volumes $(+12.0 \text{ to } +14.4$ $\text{cm}^3 \text{ mol}^{-1}$) were measured for all six Ni²⁺ complexes, and a similar dissociative I_d mechanism was assigned. The observed increase in ΔS^* has been attributed to changes in solvent-solvent interactions due to the decrease in electric dipole moment. On Mn^{2+} , the exchange of MeCN, the smallest molecule of the six nitriles, proceeds via an **Ia** pathway, as concluded from negative ΔV^* and ΔS^* values.⁹⁷ The activation enthalpies and entropies, ΔH^{\ddagger} and ΔS^{\ddagger} , both increase gradually in the order MeCN < EtCN \leq PrCn \leq Bu^tCN \leq PhCN \leq Pr^{*i*}CN, and the reaction mechanism is concluded to be less associative with mechanism is concluded to be less associative with increasing bulkiness, but it never becomes as positive as that with the sterically hindered solvent DMF.

The last member of the series of divalent dtransition metal ions, Cu^{2+} , shows solid-state Jahn-Teller distortion: the four ligands in the equatorial plane have shorter metal-ligand bonds than the two axial ligands. $117-119$ In solution this effect is expected to be dynamic: the distortion axis jumps very rapidly, and on average, all ligands become, in time, axial and equatorial. The axial ligands are only loosely bound to the metal ion, which partially explains the very high lability of all copper solvates (Table 5). Slightly positive ΔV^* values have been measured for MeOH and DMF,¹¹⁵ indicating that these solvent molecules exchange via a **d**-activation mode: molecules at the axial position can easily dissociate. On the basis of the commonly accepted assumption that Cu^{2+} , in analogy to the case of the solid state, is also sixcoordinated in aqueous solution, 120 the water exchange rate constant and a characteristic time for the inversion of the tetragonal distortion (∼5 ps at 298 K) have been determined by ¹⁷O NMR.¹¹³ The ΔV^{\ddagger} measured is relatively small $(+2.0 \pm 1.5 \text{ cm}^3 \text{ mol}^{-1})$,¹¹⁵ and in agreement with the results on MeOH and DMF, a **d**-activation mode was proposed for water exchange. However, a complementary experimental and computational study performed by double difference neutron diffraction and by first principles molecular dynamics, respectively, showed evidence that the coordination number of Cu^{2+} could be five in aqueous solution.9 It is interesting to note that in two recent EXAFS papers contradictory results with $CN = 6^{121}$ and $CN = 5^{122}$ have been found. From the Car-Parrinello molecular dynamics study, an equilibrium between square pyramid and trigonal bipyramid structures was proposed with a rapid exchange between them. Oxygen-17 experimental data showed the presence of two time constants, a fast one of ∼5 ps and a slower one of ∼230 ps, which were in the original paper interpreted as the time constant for the rapid reorientation of the Jahn-Teller distortion axis and the lifetime of a water molecule in the first coordination shell of Cu^{2+} , respectively.¹¹³ In a five-coordinated complex the experimental data could be reinterpreted with the time constants $\tau_i \sim 5$ ps for the mean lifetime of square pyramid and trigonal bipyramid structures and $\tau_M = 175$ ps for the lifetime of a water molecule in the first shell.9

3.1.2. Trivalent First Row d-Transition Metal Ions

The lability and mechanism for solvent exchange on the trivalent $[M(\text{solvent})_6]^{3+}$ transition metal ions vary with d-electronic configuration in a similar

Table 6. Rate Constants and Activation Parameters for Solvent Exchange on Trivalent First Row Transition Metal Ions*^c*

$[M(solvent)6]^{3+}$	d-electrn config	$k_1(298K)^a$	ΔH^*	ΔS^*	ΔV^*	mech	ref
			$\mathbf{S} \mathbf{c}^{3+}$				
$[Sc(TMP)_6]^{3+}$	$t_{2g}^{\ 0}$	1.21×10^{3}	37.4	-60.5	-20.1	I_{a}	75
			Ti^{3+}				
$[Ti(H_2O)_6]^{3+}$ $[Ti(DMF)6]^{3+}$	t_{2g} ¹	1.8×10^5 6.6×10^4	43.4 23.6	$+1.2$ -73.6	-12.1 -5.7	A, I_a I_{a}	124 125
			\mathbf{V}^{3+}				
$[V(H_2O)_6]^{3+}$ $[V(DMSO)6]^{3+}$	t_{2g}^2	5.0×10^{2} 1.31×10^{1}	49.4 38.5	-27.8 -94.5	-8.9 -10.1	I_{a} I_{a}	123 126
			\mathbf{Cr}^{3+}				
$[Cr(H2O)6]^{3+}$ $[Cr(H2O)6]^{3+}$	$t_{2g}^{}$ (2nd sphere) (2nd sphere)	2.4×10^{-6} 7.8×10^9 6.9×10^{9} b	108.6 21.3	$+11.6$ $+16.2$	-9.6	$I_{\rm a}$	127 128 129
$[Cr(H2O)5OH]2+$ $[Cr(DMSO)_6]^{3+}$ $[Cr(DMF)6]^{3+}$		1.8×10^{-4} 3.1×10^{-8} 3.3×10^{-7}	111.0 96.7 97.1	$+55.6$ -64.5 -43.5	$+2.7$ -11.3 -6.3	I \mathbf{I}_a I_{a}	127 130 131
			\mathbf{Fe}^{3+}				
$[Fe(H2O)6]^{3+}$ $[Fe(H2O)5OH]2+$ $[Fe(DMSO)6]^{3+}$ $[Fe(DMF)6]$ ³⁺	t_{2g} ³ e_g ²	1.6×10^{2} 1.2×10^5 9.3 6.3×10^{1}	64.0 42.4 62.5 42.3	$+12.1$ $+5.3$ -16.7 -69.0	-5.4 $+7.0$ -3.1 -0.9	I_{a} I_d $\mathbf{I}_{\mathbf{a}}$	132, 133 132, 133 134 134

^a Rate constant for the exchange of a particular coordinated solvent molecule.5 *^b* By molecular dynamics technique. *^c* Units are as follows: $k_1(298K)$, s⁻¹; ∆*H*⁺, kJ mol⁻¹; ∆*S*[‡], J K⁻¹ mol⁻¹; ∆*V*[‡], cm³ mol⁻¹.

manner to that for their divalent analogues (Table 6). The important influence of the ligand field activation energy is nicely demonstrated on the labilities of V^{2+} and V^{3+} . The LFAE of t_{2g}^2 [V(H₂O)₆]³⁺ is smaller than that of t_{2g}^3 [V(H₂O)₆]²⁺, making water exchange of the trivalent ion about six times faster than that for the divalent ion, despite the smaller formal charge (Tables 5 and 6). Both exchange processes are **a**-activated with negative volumes of activation of $-8.9 \text{ cm}^3 \text{ mol}^{-1} \text{ (V}^{3+})^{123}$ and -4.1 cm^3 mol^{-1} (V^{2+}) , 84

 Cr^{3+} forms the most inert solvent complexes of first row, high spin transition metal ions as a consequence of the large ligand field difference contributing to the activation energy.⁶ Furthermore, Cr^{3+} interacts so strongly with first shell water molecules that even second shell water molecules are relatively strongly bound. A lifetime of more than 100 ps has been measured and was nicely confirmed by a classical molecular dynamics simulation.128,129

Values of activation volumes measured on [M(sol- $\text{vent}_{6}]^{3+}$ become less negative on going along the series from Ti^{3+} to Fe^{3+} (Table 6). If Ga^{3+} , which is not a transition metal but which is in the same row in the periodic table, is added, the activation volumes become even positive (Table 4). This changeover in mechanism from associative to dissociative activation mode for solvent exchange along the series of trivalent transition metal ions is similar to that observed for the divalent ions. The ΔV^* value of -12.1 $cm³$ mol⁻¹ for water exchange on Ti³⁺ (ref 124) is markedly more negative than the following ones, and it is close to the limiting value estimated by Swaddle $(-13.5 \text{ cm}^3 \text{ mol}^{-1})^{36,37}$ for a limiting **A** mechanism. The assignment of a limiting **A** mechanism for $[Ti(H_2O)_6]^{3+}$ was also confirmed by quantum mechanical computational studies.^{135,136}

3.1.3. Second and Third Row d-Transition Metal Ions

Experimental studies of solvent exchange on octahedral second and third row transition metal ions are rather limited. Water exchange has been studied on Ru^{2+} , Ru^{3+} , Rh^{3+} , and Ir^{3+} whereas acetonitrile exchange has only be studied on Ru^{2+} (Table 7). From the arguments developed above for first row transition metals (hindered nucleophilic attack), one would expect a dissociative activation mode for water exchange on the low spin t_{2g} ⁶ hexaaqua ions $[Ru(H_2O)_6]^{2+}$, $[Rh(H_2O)_6]^{3+}$, and $[Ir(H_2O)_6]^{3+}$. In a study of the mechanism of substitution on [Ru- $(H_2O)_6$ ²⁺, it was shown that the rate constants for the anation reactions by Cl^- , Br^- , and I^- were very similar, indicating identical steps to reach the transition state by dissociation of a water molecule.137 An extension to a large variety of ligands possessing different charges and different nucleophilicities clearly demonstrated that the rate of formation of the monocomplex is independent of the entering ligand, and an **Id** mechanism was therefore attributed for $substitution$ reactions on $\text{[Ru(H₂O)₆]²⁺.^{10,138}$ In a variable pressure study of water exchange on this ion, an activation volume of $-0.4 \text{ cm}^3 \text{ mol}^{-1}$ has been observed and an **I** mechanism without predominant **a**- or **d**-character was assigned.

The aqua ions of Rh^{3+} and Ir^{3+} have been even more intriguing. From virtually identical rate constants and ΔH^* values for substitution of H₂O by Cl⁻ and Br- on [Rh(H2O)6] ³+, a dissociative **D** mechanism was assigned.¹⁴⁴⁻¹⁴⁶ However, from negative ∆*V*[‡] values for water exchange on aqua ions of Rh^{3+} and Ir3+, an associative interchange mechanism **Ia** was concluded.2,142

Final attributions of mechanisms operating for water exchange on Ru^{2+} , Rh^{3+} , and Ir^{3+} have been made from quantum chemical calculations. All attempts to calculate a transition state for an inter-

Table 7. Rate Constants and Activation Parameters for Solvent Exchange on Second and Third Row Transition Metal Ions*^b*

$[M(solvent)6]$ ²⁺	d-electrn config	$k_1(298K)^a$	ΔH^*	$\Delta S^{\scriptscriptstyle \ddag}$	$\Delta V^{\scriptscriptstyle \ddag}$	mech	ref
			Ru^{2+}				
$[Ru(H_2O)_6]^{2+}$ $[Ru(MeCN)6]$ ²⁺	$t_{2g}^{}$	1.8×10^{-2} 8.9×10^{-11}	87.8 140.3	$+16.1$ $+33.3$	-0.4 $+0.4$	$\frac{I}{I}$	139 139, 140
			Ru^{3+}				
$[Ru(H_2O)_6]^{3+}$ $[Ru(H_2O)_5OH]^{2+}$	t_{2g}^{5}	3.5×10^{-6} 5.9×10^{-4}	89.8 95.8	-48.3 $+14.9$	-8.3 $+0.9$	I_{a} I	139 139
			\mathbf{Rh}^{2+}				
$[Rh_2(MeCN)_{10}]^{4+}$	d^7	3.1×10^{-5} (eq)	66	-111	-4.9		141
			\mathbf{Rh}^{3+}				
$[Rh(H_2O)_6]^{3+}$ $[Rh(H_2O)_5OH]^{2+}$	$\mathrm{t_{2g}^{6}}$	2.2×10^{-9} 4.2×10^{-5}	131 103	$+29$	-4.2 $+1.5$	\mathbf{I}_a I	142 142
			\mathbf{Re}^{2+}				
$[Re_2(MeCN)_{10}]^{4+}$	d^5	3.1×10^{-7} (eq)	109	$+6$			143
			Ir^{3+}				
$[Ir(H2O)6]^{3+}$ $[Ir(H2O)5OH]2+$	$\mathrm{t_{2g}^{6}}$	1.1×10^{-10} 5.6×10^{-7}	130.5	$+2.1$	-5.7 -0.2	\mathbf{I}_a I	$\,2$ $\overline{2}$
		.		\sim \sim \sim \sim \sim	- - -		

a Rate constant for the exchange of a particular coordinated solvent molecule.⁵ *b* Units are as follows: *k*₁(298K), s^{−1}; ∆*H*⁺, kJ mol⁻¹; ∆*S*[‡], J K⁻¹ mol⁻¹; ∆*V*[‡], cm³ mol⁻¹.

change mechanism for [Ru(H₂O)₆]^{2+} failed, and a **D** mechanism without excluding I_d was assigned.¹⁴⁷ In a second study, it was shown that the **Ia** pathway with retention of the configuration of the spectator ligands is energetically clearly preferred over the **D** pathway.148 In the same paper, it has also been shown that for **d**- and **a**-activated mechanisms the volume change due to changes in bond lengths between the Ir^{3+} ion and the spectator water molecules is negligible: -1.8 cm³ mol⁻¹ and -0.9 cm³ mol^{-1} for the **D** and the I_a mechanism, respectively. This finding is important because it clarifies the debate about interpretation of activation volumes.¹⁴⁸

The low spin t_{2g}^{-5} aqua ion of Ru^{3+} is 4 orders of magnitude less labile than the t_{2g} ⁶ aqua ion of Ru²⁺ and exchanges H2O molecules by an **Ia** mechanism (Table 7). Both exchange rate constants are relatively slow, allowing, therefore, a direct observation of the electron exchange of the $\text{[Ru(H₂O)₆]}^{3+/2+}$ couple in aqueous solution $(k_{ex}^{298} = 20 \text{ M}^{-1} \text{ s}^{-1})$.¹⁴⁹
Solvent exchange of acetonitrile on Ru^{2+}

Solvent exchange of acetonitrile on Ru^{2+} is 8 orders of magnitude slower than water exchange (Table 6).139 This is mainly a consequence of a strong increase of ΔH^* (by more than 50 kJ mol⁻¹) which arises probably from a strong back-bonding from the electron rich Ru^{2+} into the MeCN π^* orbitals. In $Fe²⁺$ this back-bonding is much less important and the change in lability between $[Fe(H_2O)_6]^{2+}$ and $[Fe(MeCN)_6]^{2+}$, both high spin, is less than 1 order of magnitude (Table 5).

3.2. Effect of Spectator Ligands on Solvent Exchange

3.2.1. First Row Transition Oxometal Ions

The monomeric first row transition oxometal ions TiO^{2+} and VO^{2+} provide an opportunity to study the effect of the oxo ligand on the lability of the axial and equatorial ligands. Exchange rates of equatorial solvent molecules on $[VO(solvent_{eq})_4(solvent_{eq})]^{2+}$ increase in the order $H_2O \sim CH_3OH \sim DMF \sim DMSO$

Table 8. Rate Constants and Activation Parameters for Axial and Equatorial Solvent Exchange on First Row Transition Oxometal Ions $[MO(eq-solvent)_4(ax-solvent)]^{2+c}$

$[MO(solvent)_5]^{2+}$	$k_1(298K)^a$	ΛH^{\ddagger}	ΔS^{\ddagger}	ΛV^+	ref					
$TiO2+$										
$[TIO(DMSO)5]2+ b$	161 (eq)	57.5	-9.9	$+4.8$	153					
	6100 (ax)	59.8	$+28.3$	$+1.6$	153					
$\mathbf{V} \mathbf{O}^{2+}$										
$[VO(H2O)5]^{2+}$	500 (eq)	87.8	$+16.1$	-0.4	154, 155					
	\approx 10 ⁹ (ax)			$+1.9$	154, 156					
$[VO(MeOH)5]$ ²⁺	565 (eq)	39.6	-59.4		157					
$[VO(MeCN)_5]^{2+}$	2850 (eq)	29.5	-83.7	-1.0	156, 157					
$[VO(DMSO)_5]^{2+}$	1760 (eq)	60.1	$+18.5$	-5.3	158, 159					
$[VO(DMF)_5]^{2+}$	575 (eq)	30.3	-87.7		160					
	200 (eq)	54.8	-17.2	-6.8	156, 161					
	46000 (ax)	64	$+58.0$		161					
$[VO(DMA)_5]^{2+}$	4700 (eq)	42.3	-33.1	-9.7	156, 161					

^{*a*} Rate constant for the exchange of a particular coordinated solvent molecule.⁵ *b* Studied in d_3 -nitromethane diluent. solvent molecule.⁵ *b* Studied in *d₃*-nitromethane diluent.
^{*c*} Units are as follows: *k*₁(298K), s⁻¹; ∆*H*⁺, kJ mol⁻¹; ∆*S*⁺, J K⁻¹ mol⁻¹; ΔV^* , cm³ mol⁻¹.

 \leq CH₃CN \leq DMA (Table 8). Exchange of axial solvent molecules is much faster and could only be measured for H_2O and DMF. A similar observation was made for $[TiO(DMSO_{eq})_4(DMSO_{eq})]^{2+}$, the only titanyl complex where solvent exchange has been studied up to now. In water the exchange of the oxo ligand on the vanadyl complex $(k_0^{298}(\overline{VO}) = 2.4 \times$ 10^{-5} s⁻¹)¹⁵⁰ is much slower than that on the titanyl complex $(k_0^{298}$ (TiO) = 1.6 × 10⁴ s⁻¹).¹⁵¹ This huge difference cannot be assigned to electronic effects alone. Whereas the oxygen exchange on VO^{2+} is base catalyzed,¹⁵² a $[H^+]$ dependence of the oxygen exchange rate on titanyl has been observed, 151 showing that the oxo ligand on TiO^{2+} is easily protonated and thereby labilized.

3.2.2. Effect of Spectator Ligands on Solvent Exchange

Partial substitution of the coordinated solvent molecules by other ligands, which are kinetically inert and commonly denoted as spectator ligands, can

a Rate constant for the exchange of a particular coordinated solvent molecule.⁵ *b* Calculated from *k*₁(298K) and ∆*H*⁺. *c* The two inequivalent H₂O atoms exchange at different rates. ^d RSSR form of the macrocycle. ^e Five coordinate RSRS form of the macrocycle.
' Units are as follows: $k_1(298K)$, s⁻¹; ΔH^{\ddagger} , kJ mol⁻¹; ΔS^{\ddagger} , J K⁻

substantially alter the lability of the remaining solvent molecules. The influence of such spectator ligands on solvent exchange is illustrated by the series of $Ni²⁺$ complexes given in Table 9.

Substitution by NH3 and by polyamines labilizes the remaining water molecules roughly in proportion to the number of coordinating nitrogen atoms (Table 9). The source of this labilization is the greater electron donation through *σ*-bonding to the metal

center.168 It appears, however, that although bpy and tpy may also donate electron density to the metal center through *σ*-bonding, electron withdrawal through the *π*-bonding system of these ligands results in only modest changes in lability.172

The effects of temperature and pressure on the water exchange reaction of the five-coordinate complexes $[Cu(tmpa)(H_2O)]^{2-}$ and $[Cu(fz)_2(H_2O)]^{2-}$ resulted in *k*¹ values which are several orders of

magnitude less than that published for the Cu(II) aqua ion (k_1 ∼ 5 × 10⁹ s⁻¹; Table 5).¹¹³ This drastic decrease in lability has been explained by the absence of Jahn-Teller distortion for the five-coordinated species.179 The mechanism of water exchange is of associative character, and the overall charge on the complex does not seem to have a specific effect on the water exchange mechanism. The rates of exchange on the five-coordinate complexes depend less on the particular ligand and appear not to be very markedly influenced by the particular five-coordinate geometry with the exception of the case of [Cu(tpy)- $(H_2O)_2]^{2-}$, for which water exchange is very rapid.¹⁸¹

The presence of sterically constraining ligands such as Me $_6$ tren can have substantial effects on lability and mechanism on the remaining solvent molecule. DMF exchange on the five-coordinated $[M(Me₆tren)-]$ $(DMF)|^{2+}$ is substantially decreased for $M = Co$ or Cu but decreased very little when $M = Mn$.¹⁶⁴ ΔV^{\ddagger} values are consistent with a change in activation mode from associative when $M = Mn$ and Co to dissociative when $M = Cu$ (Table 9). The origin of these variations has been attributed to the somewhat interconnected causes of stereochemical and d-orbital occupancy variations.

Solvent exchange on trivalent metal ions with amines in the first coordination shell has widely been studied (Table 10). When steric crowding of the metal center is increased on going from $[M(NH_3)_5(H_2O)]^{3+}$ to $[M(CH_3NH_2)_5(H_2O)]^{3+}$, the rate of water exchange is decreased $(M = Cr)$, increased $(M = Co)$, or nearly unchanged ($M = Rh$) (Tables 10 and 11).¹⁸⁴ The changes in k_{ex} are consistent with **a**- and **d**-activated mechanisms operating for Cr and Co, respectively. The activation volumes become more positive as steric crowding increases for all three M, indicating a change to either a more dissociative or a less associative mode of activation (Figure 7).

Regarding Ru^{2+} and Rh^{3+} , both water and acetonitrile are greatly labilized by *π*-acceptor spectator ligands (Table 11). The increase in lability by more than 10 orders of magnitude along the sequence $[Ru(MeCN)_6]^{2+} \leq [Ru(\eta^6-C_6H_6)(MeCN)_3]^{2+} \leq [Ru(\eta^5-C_6H_6)(MeCN)_3]^{2+}$ C_5H_5)(MeCN)₃]⁺ is a consequence of a corresponding decrease in activation enthalpy and the last complex having the largest ∆*S*[‡]. Along the sequence, the Ru-N distance becomes longer and the activation mode becomes more dissociative, as indicated by ∆*S*^q increasing from $+0.4$ to $+2.4$ and $+11.1$ cm³ mol⁻¹.²⁰¹
Thus the kinetic *trans* effect correlates with the Thus, the kinetic *trans* effect correlates with the structural *trans* influence. The labilization of H₂O in $[Ru(\eta^6-C_6H_6)(H_2O)_3]^{2+}$ is also attributed to the *trans* labilizing effect of the π -acid (η ⁶-C₆H₆), but there is no corresponding structural influence reflected in the Ru-O distances, which are 212 pm in both complexes. The overall range of lability is 12 and 14 orders of magnitude within the series of Ru^{2+} and Rh^{3+} complexes in which H₂O, MeCN, C₆H₆, and C_5H_5 are coordinated.

3.2.3. Solvent Exchange on $M X_{x} L_{6-x}$ (M = Ti, Zr, Nb, Sn, Sb, Hf, and Ta) Adducts

Solvent exchange reactions for a variety of Lewis bases L have been studied, in inert solvents, on

octahedral adducts of the form MX_5 ⁻L with $M =$ $Nb(V)$, $Sb(V)$, and $Ta(V)$ and of the form MX_4 $2L$ with $M = Ti(V)$, $Zr(V)$, $Sn(V)$, and $Hf(V)$ ($X = F^-$, Cl^- , and Br-), and the results are summarized in Table 12.

The MX_5 . $LM = Nb$, Ta) show an interesting solvent L controlled dissociative-associative crossover for the substitution mechanism. The complete neutrality along the reaction profile allows the neglect of electrostriction effects. Moreover, an unusually large number of kinetic facts are available for mechanistic assignments: rate laws, ∆*H*⁺ and ∆*S*⁺, ΔV^* and $\Delta β^*$, steric effects, free energy relationships, and nucleophilic sequences. The exchange reactions proceed via a **D** mechanism when L is a nitrile, ether, or phosphoryl ligand and via an **Ia** or **A** mechanism when L is a dimethyl sulfide, dimethyl selenide, or dimethyl telluride. Going from the first set of ligands to the second, the activation parameters ΔH^* and ΔS^* decrease abruptly, with a change in sign for the latter parameter. The dissociative and associative reactions are respectively accelerated and slowed when the ligand and the reaction center are sterically hindered. The dissociative reactions fit to a linear free energy relationship of slope near unity, whereas, for the associative reactions, the reaction center exerts discrimination between the various nucleophiles (order of reactivity $(CH_3)_2S < (CH_3)_2Se < (CH_3)_2Te$). Interestingly, the exchange on the $TaBr_5(CH_3)_2S$ adduct can proceed via both mechanistic paths. For this exchange, the rate law is second order below 300 K, but a first-order term appears at higher temperatures. This temperature-dependent mechanism crossover is not surprising if one considers the large differences in ΔH^* between the two paths. Positive activation volumes ranging from $+15.2$ to $+30.5$ cm³ $mol⁻¹$ have been determined for limiting dissociative (**D**) reactions when $L = (CH₃)₂O$, $CH₃CN$, $(CH₃)₃CCN$, $(CH_3O)Cl_2PO$, and $((CH_3)_2N)_3PS$.^{221,225} Negative values of ΔV^{\dagger} range between -10.7 and -19.8 cm³ mol⁻¹ for associative-interchange reactions (I_a) when $L =$ $(CH₃)₂S$, $(CH₃)₂Se$, and $(CH₃)₂Te$. From a simple model based on hard and incompressible spherical or cylindrical molecules, volumes for octahedral complexes and five-coordinated intermediates in a **D** mechanism have been calculated. The volume differences obtained were close to the measured positive ΔV^* , confirming the limiting **D** mechanism for ligands with O and N as binding atoms.²²¹ A crossover in mechanism is observed for ligands with the soft binding atoms S, Se, and Te. Application of the molecular model to an **A** mechanism would give an absolute volume of $|\Delta V^{\dagger}|$ at least equal to that of the Me2O **D** reaction. Considering the very crowded first coordination sphere of the adducts, the addition of a seventh ligand without substantial modification of bond lengths and angles of the six present ligands seems to be impossible. The relatively small negative ΔV^* values of -10 to -20 cm³ mol⁻¹ lead, therefore, to the suggestion of an I_a mechanism for $(CH_3)_2S$, $(CH_3)_2$ Se, and $(CH_3)_2$ Te without excluding an **A** mechanism with a substantial elongation of the five MX bonds.

Table 10. Effect of Spectator Ligands on the Solvent Exchange Rate Constants on First Row Trivalent Transition Metal Ions*^c*

^a Rate constant for the exchange of a particular coordinated solvent molecule.5 *^b* Two exchange processes observed. *^c* Units are as follows: k_1 (298K), s⁻¹; ∆*H*⁺, kJ mol⁻¹; ∆*S*[‡], J K⁻¹ mol⁻¹; ∆*V*[‡], cm³ mol⁻¹.

Figure 7. Volume profiles for the water exchange on $[M(NH_3)_5(H_2O)]^{3+}$ and $[M(CH_3NH_2)_5(H_2O)]^{3+}$ for three inert metal ions. A shift to more positive (less negative) volumes of activation is observed with the bulkier methylamine groups.

For the $SbCl_5$ ⁻L adducts, the solvent exchange reactions studied in CH_2Cl_2 and $(CHCl_2)_2$ as diluent show first-order rate laws, positive activation entropies ranging from $+31$ to $+108$ J K⁻¹ mol⁻¹, positive activation volumes from $+18.2$ to $+30.0$ cm³ mol⁻¹, and a linear free energy relationship of slope -1.08 for a series of nitriles, ethers, and -PO donor solvents. It is concluded that a limiting dissociative **D** mechanism exists for the whole series of solvent exchange reactions studied.

Octahedral MX_4 ·2L adducts can exist in CH_2Cl_2 and CHCl3 in the *cis* form, in the *trans* form, or as an equilibrium of both *cis* and *trans* isomers.226-²²⁹ On the $3d^0$ TiCl₄.2L and on the $4d^{10}$ SnCl₄.2L adducts, *cis*/*trans* isomerization and intermolecular exchange of L on the *cis* isomer have been observed with first-order rate laws and positive activation volumes.217,223,224,230 **D** mechanisms with five-coordinated intermediates were concluded for the intermolecular *cis* substitution, which was found to be faster than *cis*/*trans* isomerization.224

Interestingly, the soft solvent Me2S and Me2Se do exchange dissociatively on the d^0 and d^{10} tetrachlorides, contrary to the associative behavior observed for $Nb(V)$ and $Ta(V)$ pentahalide analogues. In the case of adducts with larger $Zr(IV)$ and $Hf(IV)$ ions,

the exchange behavior differs completely: the fastest process is the *cis*/*trans* isomerization, and the slowest processes are the intermolecular solvent exchanges on the *cis* and *trans* isomers.218 The intermolecular exchanges are now second order with very negative ΔS [‡] values and, when measured, a negative ΔV [‡] value too $(-11.5 \text{ cm}^3 \text{ mol}^{-1}$ for *trans*-ZrCl₄ \cdot 2(CH₃O)₃-PO). The two 2D¹H NMR exchange correlation spectra (Figure 8) obtained at 0.1 and 198 MPa exemplify this behavior for $ZrCl_4 \cdot 2(CH_3O)_3PO^{231}$ The intermolecular processes show an important increase in rate with pressure (large negative ΔV^* values), whereas for the intramolecular isomerization the effect is much smaller (small ΔV^* value). This is typical of **Ia**/**A** behaviors and an intramolecular process. The striking differences in reaction mechanism from $Ti(IV)$ and $Sn(IV)$ to $Zr(IV)$ and $Hf(IV)$ metal chloride adducts, MCl₄·2L, is due to the increase in ionic radius, which favors the changeover from a bond breaking to a bond making mechanism.

3.3. Square Planar Complexes

Square planar stereochemistry is mostly confined to the d^8 transition metal ions, and Pd^{2+} and Pt^{2+} metal centers are the most studied ones. The vast majority of solvent exchange reactions on square planar complexes undergo an **a**-activated mechanism, which is most probably a consequence of the coordinatively unsaturated four-coordinate 16 outer shell electron complex achieving noble gas configuration in the five-coordinate transition states or reactive intermediate.²³²

Solvent exchange on Pd^{2+} and Pt^{2+} complexes shows a variation in lability of about 16 orders of magnitude and is generally characterized by activation volumes which are either negative or close to zero (Table 13). Exchange reactions of nonaqueous solvents have been studied in inert diluents and were found to have a second-order rate dependence on free solvent concentration, underlining their associative character. The size of the solvent molecules has an important effect on the lability. Replacing $Me₂S$ by the more sterically hindered $Et₂S$ decreases the exchange rate constant by more than 400 times. Even more, solvent exchange on $[Pd(DMA)_4]^{2+}$ is slower than that on $[Pd(D\tilde{M}F)_4]^{2+}$, despite the stronger nucleophilicity of DMA, as shown by the Gutmann donor numbers of 27.8 and 27.0 for DMA and DMF, respectively. Such steric influence on reaction rates

Table 11. Effect of Spectator Ligands on the Solvent Exchange Rate Constants on Second and Third Rows Transition Metal Ions*^e*

^{*a*} Rate constant for the exchange of a particular coordinated solvent molecule.⁵ *b* All three H₂O or MeCN are equivalent. ^{*c*} At 308.4 K. ^{*d*} At 279 K. ^{*e*} Units are as follows: k_1 (298K), s⁻¹; ΔH^{\ddagger}

is consistent with the operation of an **a**-activated mechanism.

On Pd2+, second-order exchange rate constants on solvent molecules with hard donor atoms, like H_2O , MeCN, DMF, and DMA, differ by less than a factor of 15, whereas solvents with much softer binding atoms, like $MeS₂$ and MeNC, have much faster exchange rates. In the case of MeNC, this may be due to the formation of a five-coordinate intermediate stabilized by π back-bonding from the metal center to MeNC. This dependence on the softness of the binding atom is nicely demonstrated by the DMSO

Table 12. Kinetic Parameters for Solvent Exchange for $MX_xL_{6-x} + L^* \approx MX_xL_{6-x}^* + L$ **in** CH_2Cl_2f

complex	$k_1(298K)^a$	$k_2(298K)^a$	ΔH^*	$\Delta S^{\scriptscriptstyle \ddag}$	ΔV^{\ddagger}	mech	ref
		Ti(V)					
cis -TiF ₄ ·2(CH ₃) ₂ O ^d		1.7×10^5	$52.3\,$	$+30.5$			216, 217
cis -TiCl ₄ ·2(CH ₃) ₂ O	2.8×10^{7}		61.3	$+103.1$		$\mathbf D$	217
cis -TiCl ₄ ·2(CH ₃) ₂ S	3.5×10^6		56.9	$+1.1$	$+24.4$	D	217
cis -TiCl ₄ ·2(CH ₃) ₂ Se	8.9×10^5		56.1	$+7.1$	$+26.1$	D	$217\,$
cis -TiCl ₄ ·2(CH ₃ O) ₂ ClPO ^b	5.5×10^4		56.6	$+5.7$	$\mathcal{L}_{\mathcal{A}}$	D	217
cis -TiCl ₄ ·2TMPA ^b	5.6×10^2		60.1	$+0.3$	$+17.5$	D	217
cis -TiBr ₄ ·2(CH ₃) ₂ S	2.4×10^{6}		$50.2\,$	$+5.5$		$\mathbf D$	217
cis -TiBr ₄ \cdot 2(CH ₃) ₂ Se	7.2×10^{5}		$53.8\,$	$+7.7$		D	217
		$\mathbf{Zr}(\mathbf{IV})$					
cis - $ZrCl_4(CH_3)_2O$		4.3×10^{-3}	$28.1\,$	-100.3			218
cis - $ZrCl_4$ · $2Cl_2(CH_3N)POb$	0.843		58.9	-48.8			218
		78	34.5	-93.0			
cis -ZrCl ₄ ·2(CH ₃ O) ₂ ClPO ^b		110	27.6	-113.2			218
trans- $ZrCl_4$ ·2(CH ₃ O) ₃ PO ^b		276	30.2	-96.9	-11.1		218
trans- $ZrCl_4 \cdot 2(ClCH_3)_2N)PO^c$		70	33.5	-97.3			218
		Nb(V)					
$NbF_5 \cdot ((CH_3)_2N)_3PO$		0.16	33.5	-147		I_d	219
$NbF_5 \cdot ((CH_3)O)_3PO$		2.5×10^5	17.2	$-84\,$		I_d	219
$NbCl_5$ ⁽ $CH_3)_2O^b$	810		$61.5\,$	$+17$	$+28.7$	$\mathbf D$	220, 221
$NbCl5·(CH3)2S$		3.0×10^4	15.9	-106		\mathbf{I}_a	$220\,$
$NbCl_5 \cdot CH_3CN^b$	550		71.1	$+46\,$	$+19.5$	D	221, 222
$NbCl5 (CH3)3CCNb$	280		$71.6\,$	$+42$	$+15.2$	$\mathbf D$	221, 222
$NbCl_5 \cdot BrCH_2CN^b$	1.6×10^4		66.6	$+59$		$\mathbf D$	222
$NbCl_5 \cdot ClCH_2CN^b$	3.2×10^4		71.2	$+80$		$\mathbf D$	$222\,$
$NbCl_5 \cdot FCH_2CN^b$	6.4×10^{4}		66.1	$+71$		$\mathbf D$	222
$NbCl5·Cl(CH3O)2POb$	3.4		83.7	$+46$		$\mathbf D$	219
$NbCl5·Cl2(CH3O)POb$	300 1.3×10^{4}		64.0	± 17	$+20.5$	$\mathbf D$	219, 221
$NbCl5·Cl3POb$			67.0	$+58.6$		$\mathbf D$	219
$NbCl5((CH3)2N)3PS$	14		$59\,$	$+65$	$+17.7$	$\mathbf D$	219, 221
$NbBr_5 \cdot (CH_3)_2O$	3.9×10^4	6.4×10^3	66.5 21.8	66 -99	-12.1	$\mathbf D$	220 220, 221
$NbBr_5 \cdot (CH_3)_2S$						I_{a}	
		Sn(IV)					
cis -SnCl ₄ ·2(CH ₃) ₂ CO	2.2×10^{8}		51.3	$+87$		$\mathbf D$	223
cis -SnCl ₄ ·2(CH ₃) ₂ S	1.2×10^{7}		66.6	$+114.3$	$+38.4$	$\mathbf D$	224
cis -SnCl ₄ ·2TMPA	8.1×10^6		62.0	$+38$		$\mathbf D$	223
$trans\text{-}SnCl_4\text{-}2$ TMPA	5.3		80.4	$+39\,$		$\mathbf D$	$223\,$
		Sb(V)					
$SbCl_5$ ⁻ CH_3 ₂ O	1.9×10^{3}		75.5	$+71$	$+27.2$	D	$225\,$
$SbCl5 (CH3CH2)2O$	1.2×10^{4}		96.2	$+156$	$+30.0$	$\mathbf D$	$225\,$
SbCl ₅ ·CH ₃ CN	1.5×10^{5}		66.5	$+77$	$+24.7$	$\mathbf D$	$225\,$
$SbCl_5 \cdot CH_3SCN$	1.6×10^5		$57.1\,$	$+46$		$\mathbf D$	$225\,$
$SbCl5 (CH3)3CCN$	1.5×10^{5}		70.1	$+89$	$+18.2$	$\mathbf D$	$225\,$
$SbCl_5$ · $(CH_3)_2CO$	3.8×10^3		69.9	$+58$	$+28.1$	$\mathbf D$	$225\,$
$SbCl_5 \cdot Cl(CH_3)_2NPO^e$	5.9×10^{-5}		111.5	$+48$		$\mathbf D$	$225\,$
$SbCl5·Cl2(CH3)3NPO$	340		70.8	$+41$	$+23.0$	D	$225\,$
$SbCl5 (CH3O)3POe$	3.2×10^{-3}		113.8	$+89\,$		D	$225\,$
$SbCl_5 \cdot Cl(CH_3O)_2PO^b$	86		74.3	$+41$		$\mathbf D$	225
$SbCl5·Cl2(CH3O)PO$	7.8×10^3		60.1	$+31$		D	225
$SbCl_5$ ·TMU ^e	2.3×10^{-4}		120.9	$+91$		D	225
$SbCl_5 \cdot DMA^e$	2.5×10^{-4}		125.8	$+108$		D	225
$SbCl_5 \cdot DMF^e$	1.5×10^{-4}		124.7	$+100$		D	225
$SbCl_5$ ·THF ^e	4.9		101.0	$+107$		D	225
$SbCl5 \cdot POCl3e$	1.0×10^{6}		56.9	$+61$		D	225
		Hf(IV)					
cis -HfCl ₄ ·2Cl ₂ (CH ₃ N)PO ^b	1.5		76.1	$+13.4$		$\mathbf D$	218
		130	$37.2\,$	-79.5		I_{a}	
cis -HfCl ₄ ·2Cl(CH ₃ O)PO ^b		260	20.1	-131.4		I_{a}	218
trans-HfCl ₄ ·2Cl(CH ₃ O)PO ^b		970	26.4	-99.2		I_{a}	218
trans-HfCl ₄ ·2(CH ₃ O) ₂ PO ^b		53	43.1	-67.4		I_{a}	218
		Ta(V)					
$TaF_5 \cdot ((CH_3)_2N)_2(CH_3O)PO$		6.3×10^3	23.9	-92		I_d	219
$TaF_5 \cdot ((CH_3)_2N)(CH_3O)_2PO$		2.6×10^4	18.0	-100		I_d	219
$TaF_5 \cdot (CH_3O)_3PO$		1.8×10^5	18.0	-84		I_d	219
$TaCl5·(CH3)2O$	19		83.3	$+59$	$+27.8$	$\mathbf D$	220, 221
$TaCl5·(CH3)2S$		2.4×10^3	21.8	-107	-19.8	I_{a}	220, 221
$TaCl5 (CH3)2Se$		3.1×10^3	25.1	-94	$^{-18.7}$	I_{a}	220, 221
$TaCl_5 \cdot (CH_3)_2Te$		3.8×10^3	24.3	-95	-10.7	I_{a}	220, 221
$TaBr_5 \cdot (CH_3)_2O$	960		74.5	$+62$	$+30.5$	D	220, 221
$TaBr_5 \cdot (CH_3)_2S$		250	28.9	-102	-12.6	I_{a}	220, 221
$TaBr_5 \cdot (CH_3)_2$ Se		1.1×10^{3}	33.1	-76	-13.6	I_{a}	220, 221
$TaBr_5 \cdot (CH_3)_2Te$		2.0×10^3	31.8	-75	-16.4	I_{a}	220, 221
^{<i>a</i>} Calculated from activation parameters ^b In CHC _{ls} ^c In 1 1 2 2-tetrachloroethane ^d In SO ₂ ^e In (CHCl _a) c f Units are as follows:							

^{*a*} Calculated from activation parameters. ^{*b*} In CHCl₃. *^c* In 1,1,2,2-tetrachloroethane. ^{*d*} In SO₂. *^e* In (CHCl₂)₂. *f*</sub> Units are as follows: k_1 (298K), s⁻¹; k_2 (298K), m⁻¹ s⁻¹; ΔH^* , k

Figure 8. 400 MHz 2D 1H NMR exchange correlation spectra (a) at 0.1 MPa and (b) at 198 MPa for the intermolecular exchange between free $\rm (CH_3O)_3PO$ and both *cis*- and *trans*-coordinated solvent in $ZrCl_4$ ·2(CH_3O_3PO) and for the intramolecular *cis*/*trans* isomerization (at 256 K in $CHCl₃/CDCl₃$ as diluent).

exchange on *cis*-[Pd(Me₂**SO**)₂(Me₂**SO**)₂]²⁺, where two Me2SO groups are *S*-bonded and two are *O*-bonded.240 The soft donor Me2*S*O exerts a strong *trans* effect on

the hard donor $Me₂SO$, which is a good leaving ligand, and vice versa. As a consequence, Me2S*O* exchanges much more rapidly than Me2*S*O. The relative labilities of Pd^{2+} and Pt^{2+} complexes vary with the nature of the solvent molecules (Table 13). Exchange rates of soft solvents, with the exception of 1,4-dithiane and $Me₂S$, are very similar for both metal ions, whereas hard solvents exchange 6 orders of magnitude more slowly on Pt^{2+} than on Pd^{2+} .

Mechanistic interpretation of activation volumes on square planar complexes is complicated by the geometry. The sterically less crowded complexes may have two loosely bound solvent molecules occupying the axial sites above and below the plane.²⁴¹ Replacing them in the formation of a five-coordinated transition state or intermediate may result by compensation in relatively small volume effects. It is therefore difficult to distinguish between **Ia** and **A** mechanisms from the value of the activation volume. Nevertheless, the ΔV^{\dagger} values are negative and, together with the second-order rate laws observed, point to an **a**-activation for those solvent exchange reactions.

The operation of a **d**-activated mechanism with the formation of a three-coordinate intermediate is, however, favored by strong *σ*-donor ligands such as phenyl and methyl.²⁴² The exchange rate of DMSO on $[PtPh₂(DMSO)₂]^{2+}$ is nearly independent of the free DMSO concentration in the diluent CDCl₃, and positive activation volumes on complexes of the form $[PtR₂S₂]²⁺$ (R = Ph, Me; S = Me₂SO, Me₂S) have been measured.243 The overall mechanistic picture has been taken as the first clear-cut evidence for the operation of a **D** mechanism involving a 3-coordinate 14-electron intermediate for simple ligand substitution on square planar complexes (Table 14).

Table 13. Rate Constants and Activation Parameters for Solvent Exchange on Square Planar Transition-Metal Ions*^j*

complex	$k_2(298{\rm K})^a$	ΔH^*	ΔS^*	ΔV^{\ddagger}	ref
		Pd^{2+}			
$[{\rm Pd}({\rm NH_3})_4]^{2+~b}$	0.016	67.3	-54.1		233
$[{\rm Pd}({\rm Et}_2{\rm S})_4]^{2+ c }$	5.0	50.4	-62.8	-11.6	234
$[{\rm Pd}({\rm H}_{2}{\rm O})_{4}]^{2+}$	10.2 ^d	49.5	-60	-2.2	235
	560 ^e	49.5	-26	-2.2	235
$[Pd(DMA)_4]^{2+ c}$	34.8	43.2	-76.2	-2.8	234
$[Pd(MeCN)4]$ ^{2+ c}	48.8	45.4	-60.1	-0.1	234
$[Pd(DMF)4]^{2+ c}$	153	41.9	-62.3	-0.2	234
$[{\rm Pd}({\rm Me}_2{\rm S})_4]^{2+ c }$	2140	31.9	$-74.3f$	-9.4	234
$[{\rm Pd}(1,4\text{-dithiane})_2]^{2+\,c}$	9780	22.9	-91.6	-9.8	236
$[Pd(MeNC)4]$ ^{2+ g}	1.06×10^{6}	16.4	-74.5	-3.1	234
		Pt^{2+}			
$[Pt(NH_3)_4]^{2+ b}$	9.5×10^{-10} d	125	$+4$		237
$[Pt(H_2O)_4]^{2+}$	7.1×10^{-6} d	89.7	-43	-4.6	238
	3.9×10^{-4} ^e	89.7	-9	-4.6	238
$[Pt^{IV}(H_2O)_2(C_2O_4)_2]$	7.0×10^{-6} d	115	$+42$		239
$[Pt(Me2S)4]^{2+ c}$	1.54	42.1	-100.2	-22.0	236
cis -[Pt(Me ₂ SO) ₂ (Me ₂ SO) ₂] ^{2+ c,h}	$\overline{2}$	47	-74	-5	240
cis -[Pt(Me ₂ SO) ₂ (Me ₂ SO) ₂] ^{2+ c,i}	3200	32.8	-62.0	-2.5	240
$[Pt(1,4-dithiane)_2]^{2+\epsilon}$	28.8	32.9	$-106\,$	-12.6	236
$[Pt(MeNC)4]$ ^{2+ g}	6.2×10^{5}	13.8	-87.9	-3.7	234

^a Second-order rate constant for the exchange of a particular coordinated solvent molecule.5 *^b* In aqueous solution. *^c* Studied in d_3 -nitromethane diluent. d Units are dm³ mol $^{-1}$ s $^{-1}$. e First-order rate constant for the exchange of a particular water molecule.⁵ *f* Misprint in ref 234 corrected in ref 236. *g* Studied in *d₃*-acetonitrile diluent. *h* Sulfur bonded. *i* Oxygen bonded. *j* Units are as follows: $k_2(298K)$, kg mol⁻¹ s⁻¹; ΔH^{\ddagger} , kJ mol⁻¹; ΔS^{\ddagger} , J K⁻¹ mol⁻¹; ΔV^{\ddagger} , cm³ mol⁻¹.

^a Second-order rate constant for the exchange of a particular coordinated solvent molecule. *^b* Units are dm3 mol-¹ s-1. *^c* Firstorder rate constant for the exchange of a particular water molecule.5 *^d* Studied in *d3*-nitromethane diluent. *^e* Studied in benzene diluent. *^f* Sulfur bonded. *^g* Oxygen bonded. *^h* Studied in *d3*-chloroform diluent. *ⁱ* Studied in *d6*-acetone diluent. *^j* Units are as follows: $k_2(298\mathrm{K})$, kg mol⁻¹ s⁻¹; ΔH^\ddagger , kJ mol⁻¹; ΔS^\ddagger , J K⁻¹ mol⁻¹; ΔV^\ddagger , cm³ mol⁻¹.

A series of monoalkyl square planar complexes of the type $[Pt(N-N)(CH_3)(Me_2SO)]PF_6$, where N-N represents chelating diamines or diimines of widely different steric and electronic characteristics, were tailored to offer only one site of exchange to a neutral molecule, that is, DMSO, in a noncoordinating solvent (Table 14).²⁴⁸ The lability of dimethyl sulfoxide in the complexes depends in a rather unexpected and spectacular way upon the nature of the coordinate
N–N ligands, the difference in reactivity between the N-N ligands, the difference in reactivity between the
first Me₄en, $k_2^{298} = 1.15 \times 10^{-6}$ mol⁻¹ s⁻¹, and the
last Me₂phen, $k_2^{298} = 3.81 \times 10^4$ mol⁻¹ s⁻¹, members
of the series being greater than 10 order of the series being greater than 10 orders of magnitude, as a result of a well-known phenomenon of steric retardation (for the first complex) and an unprecedented case of steric acceleration (for the last complex). Other factors of primary importance in controlling the reactivity are (i) the presence of an extensive π system on the ligand N-N, (ii) the ease with which this π system interacts with nonbonding d electrons of the metal, and (iii) the flexibility and ease of elongation of the chelate bite distance. The basicity plays a somewhat minor role, except in the restricted range of the same class of compounds such as substituted phenanthrolines.

4. Solvent Exchange on Lanthanides and Actinides

4.1. Solvent Exchange on Trivalent Lanthanides

The fifteen trivalent lanthanide ions La^{3+} , Ce^{3+} , $\rm Pr^{3+}, Nd^{3+}, Pm^{3+}, Sm^{3+}, Eu^{3+}, Gd^{3+}, Tb^{3+}, Dy^{3+}, Ho^{3+},$ $Er³⁺, Tm³⁺, Yb³⁺, and Lu³⁺, which are commonly$ denoted as Ln^{3+} , represent the most extended series of chemically similar metal ions. The filling of the 4f orbitals from La^{3+} to Lu^{3+} is accompanied by a smooth decrease in atomic radius of 18.4 pm for ninecoordinate ionic radii and of 18.3 pm for eightcoordinate ionic radii.38 As a consequence of the shielding of the 4f orbitals by the filled 5s and 6p orbitals, the ligand field effects on Ln^{3+} ions are very small by comparison with those for first row transition metal ions. The geometry of the first coordination shell is mainly determined by the electrostatic attraction of the strongly charged ion on polar solvent molecules and by electrostatic and steric repulsion between the solvent molecules.

4.1.1. Water Exchange on Ln^{3+} Aqua lons

The hydration number of the trivalent lanthanide ions has been extensively addressed by various

Figure 9. Absolute partial molar volumes, V_{abs}° , of $[Ln(H₂O)_n]$ ³⁺ in aqueous $Ln(ClO₄)₃$ solutions (\Box), compared with calculated values for $[Ln(H_2O)_8]^{3+}$ and $[Ln(H_2O)_9]^{3+}$ (upper and lower dotted lines, respectively). Interchange $\rm{rate~constants},$ $k_{\rm{i}},$ for substitution of $\rm{SO_4^{2-}}$ on $\rm{[Ln(H_2O)_n]^{3+}}$ are shown as O, and water exchange rate constants (at 298 K) for $\text{Ln}(H_2O)_8]^{3+}$ are shown as \bullet . Activation enthalpies, ΔH^{\ddagger} , activation entropies, ΔS^{\ddagger} , and activation volumes, ΔV^{\dagger} , are shown as \blacktriangledown , \diamondsuit , and \blacksquare , respectively.

techniques such as neutron scattering, ^{249,250} X-ray scattering, extended X-ray absorption^{251,252} fine structure $(EXAFS)$, 253 and density $254,255$ and by spectrophotometric ones.256 The change in coordination number, CN, from nine for the lighter ions La^{3+} to Nd^{3+} to eight for the heavier ions Gd^{3+} to Lu^{3+} is now well established. This change in CN is a direct consequence of the lanthanide contraction and is nicely reflected in the evolution of the absolute partial molar volumes, V_{abs}° , along the Ln^{3+} series (Figure 9).254,255

The change of hydration number across the Ln^{3+} series has significant consequences for the kinetics of water exchange between the first coordination shell of the lanthanide ions and the bulk of the solution. As can be seen from Figure 9, *k*ex decreases from Gd^{3+} to Yb^{3+} along the series with the systematic decrease of the ionic radius. Both ∆*S*[‡] and ΔV^{\dagger} are negative, but the activation volume is far

Table 15. Rate Constants and Activation Parameters for Water Exchange on Lanthanide Aqua Ions*^c*

		k_{1}						
complex		$r_{\rm M}{}^a$ (298K) ^a	ΛH^*	ΔS^{\ddagger}	ΛV^{\ddagger}	mech	ref	
			Eu^{2+}					
$[Eu(H_2O)_7]^{2+}$		500 ^b	15.7				-7.0 -11.3 I_a , A 3, 4, 260	
	Ln^{3+}							
$[Nd(H_2O)_9]^{3+}$		≥ 50					259	
$[Pr(H_2O)_9]^{3+}$		≥ 40					259	
$[Gd(H_2O)_8]^{3+}$		83.0		$14.9 - 24.1$	-3.3 I.		261	
$[Tb(H_2O)_8]^{3+}$		55.8		$12.1 - 36.9$	-5.7 I.		262, 263	
$[Dy(H_2O)_8]^{3+}$		43.4	16.6	-24.0	-6.0	L,	262, 263	
$[Ho(H_2O)_8]^{3+}$		21.4		$16.4 -30.5$	-6.6 I.		262, 263	
$[Er(H2O)8]^{3+}$		13.3	18.4	-27.8	-6.9	L.	262, 263	
$[{\rm Tm}({\rm H_2O})_8]^{3+}$		9.1	22.7	-16.4	-6.0 I.		262, 263	
$[Yb(H2O)8]$ ³⁺		4.7		$23.3 - 21.0$			262, 263	

^a First-order rate constant for the exchange of a particular coordinated solvent molecule.5 *^b* The value originally published for CN = 8 in ref 260 was corrected for CN = 7 in ref 4. ^{*c*} Units
are as follows: r_M pm; $k_1(298K)$, 10^7 s⁻¹; ΔH^{\ddagger} , kJ mol⁻¹; ΔS^{\ddagger} . are as follows: r_M , pm; $k_1(298K)$, 10^7 s⁻¹; ΔH^* , kJ mol⁻¹; ΔS^* , $J K^{-1}$ mol⁻¹; ΔV^* , cm³ mol⁻¹.

from the value of $-12.9 \text{ cm}^3 \text{ mol}^{-1}$ calculated with Swaddle's semiempirical model for the reaction volume for CN8 \rightarrow CN9 on lanthanides³⁶ (see dotted lines in Figure 9) and from the value of -11 cm^3 mol^{-1} measured by variable pressure UV-vis experiments on the equilibrium $[Ce(H_2O)_8]^{3+} + H_2O \rightleftharpoons$ $[Ce(H₂O)₉]$ ³⁺.²⁵⁷ Therefore, an I_a mechanism has been assigned for water exchange on $[Ln(H₂O)₈]^{3+}$. The increase of the exchange rate constants from Yb^{3+} up to Gd3⁺ is understandable: according to an **Ia** mechanism, the transition state for water exchange is close to an ennea-coordinate Ln^{3+} , which is more and more favored for the larger ions (Table 15). The same increase is observed for the interchange rate constants, *k*i, between an inner sphere water molecule and a SO_4^2 ion from the outer sphere.²⁵⁸ For the light lanthanides, the kinetic effect is not sufficient to enable the determination of k_{ex} by ¹⁷O transverse NMR relaxation rate measurements at 9.4 T. For $[Pr(H₂O)₉]$ ³⁺ and $[Nd(H₂O)₉]$ ³⁺, which have the most favorable chemical shifts in the beginning of the lanthanide series, measurements at 14.1 T allowed the determination of lower limits of *k*ex (see the arrows in Figure 9).259 For the three other lighter paramagnetic lanthanides ions, Ce^{3+} , Pm^{3+} , and Sm^{3+} , the kinetic effect and the chemical shifts are too small to enable the determination of the water exchange rate by 17O NMR relaxation rate measurements.

The eight- and nine-coordinate Ln^{3+} aqua ions adopt in aqueous solution a square antiprism geometry (SAP) and a tricapped trigonal prism geometry (TTP), respectively.250,264 Consequently, the transition state, $[Ln(H₂O)₉]³⁺$, in an I_a water exchange mechanism on $[Ln(H₂O)₈]³⁺$ is proposed to have a TTP geometry, similar to the one observed in the solid state for the whole series. This leads to the possible mechanistic path for water exchange on [Ln(H₂O)₈]^{3+} illustrated in Figure 10. It can be well understood by taking the reverse case of an exchange on $[Ln(H₂O)₉]³⁺$ (case of the early lanthanides) that the transition state should have a metal center with lower CN, like $[Ln(H_2O)_8]^{3+}$. In this latter case, the water exchange should proceed through an I_d mech-

Figure 10. Possible mechanistic paths for water exchange on eight- and nine-coordinate lanthanides.

anism with a transition state that adopts SAP geometry. This change in mechanism has been supported by a computational study using classical molecular dynamics simulation.265

4.1.2. Nonaqueous Solvents

The only nonaqueous solvents studied over the series on Ln^{3+} are DMF and TMU (Table 16). Exchange of DMF has been studied in neat solvent and in the diluent $CD_3NO_2.^{266}$ For the light lanthanides Ce^{3+} , Pr^{3+} , and Nd^{3+} , an equilibrium between eight- and nine-coordination is observed at low temperature.56 The reaction volume for addition of a DMF molecule to $[Nd(DMF)₈]^{3+}$ was determined spectrophotometrically to be -9.8 cm³ mol⁻¹.⁵⁶ Ki-
netic parameters for DMF exchange were measured netic parameters for DMF exchange were measured by ${}^{1}H$ NMR for the heavier lanthanides from Tb^{3+} to Yb3+. ²⁶⁶ The exchange process is characterized by a systematic increase of ΔH^* , by a change from negative to positive ΔS^* , and by positive ΔV^* as the ionic radius decreases (Table 16). **d**-Activation has been assigned for these exchange processes with a mechanistic crossover from \mathbf{I}_{d} to limiting \mathbf{D} at $Er^{3+}.^{267}$

Table 16. Rate Constants and Activation Parameters for Nonaqueous Solvent Exchange on Trivalent Lanthanides*^d*

		k_{1}					
M^{3+}	r_M^a	$(298K)^{b}$	ΔH^*	ΔS^{\ddagger}	ΛV^*	mech	ref
				$[Ln(DMF)8]^{3+}$			
$\mathrm{Th^{3+}}$	104.0	19×10^6	14.1	-58	$+5.2$ I_d		266
Dy^{3+}	102.7	6.3×10^6	13.8	-69	$+6.1$ I_{d}		266
Ho^{3+}	101.5	3.6×10^6	15.3	-68	$+5.2$ I_d		266
Er^{3+}		100.4 13×10^6	23.6	-30	$+5.4$	D and Id	266
Tm^{3+}	99.4	31×10^6	33.2	$+10$	$+7.4$	D	266
$\rm Yb^{3+}$	98.5	99×10^6	39.3	$+40$	$+11.8$	D	266
				$[Ln(DMSO)8]^{3+}$			
Gd^{3+}		$105.3 \quad 6.2 \times 10^6 \quad 32.8$		-4.7	$+8.2$ L _d		268
				$\left[{\rm Ln}({\rm TMU})_6\right]^{3+ c }$			
Tb^{3+}	92.3	1380	38.2	-56.7			269
Dy^{3+}	91.2	1290	38.6	-56.0		٠	269
Ho^{3+}	90.1	510	40.9	-55.9		\blacksquare	269
Y^{3+}	90.0	253	27.1	-108		D	270
Er^{3+}	89.0	214	35.5	-81.3		D	269
Tm^{3+}	88.0	145	29.3	-105		D	271
Yb^{3+}	86.8	65.5	38.3	-81.8		D	269
Lu^{3+}	86.1	41.9	41.7	-74		D	272
Sc^{3+}	74.5	0.90	68.6	-15.7		D	78

^a Eight- and six-coordinate ionic radii from ref 38. *^b* Firstorder rate constant for the exchange of a particular coordinated $r_\mathrm{M,~pm}; k_1$ (298K), 10⁷ s^{−1}; ∆*H*[‡], kJ mol^{−1}; ∆*S*[‡], J K^{−1} mol^{−1}; ∆^{γ‡}, $cm³$ mol⁻¹.

Exchange of TMU on $[Ln(TMU)_{6}]^{3+}$ has been studied in CD_3CN diluent, and k_{ex} was found to be independent of TMU concentration, consistent with the operation of a **D** mechanism (Table 16).78,269,270,272 The decrease in coordination number results in a decrease in lability by several orders of magnitude.

Exchange of DMSO on lanthanides has only be studied on $[{\rm Gd(DMSO)_8}]^{3+}$ so far (Table 16).²⁶⁸ The rate constant measured is more than 2 orders of magnitude slower than that for water exchange. Comparison of the positive ΔV [‡] measured on $[Gd(\bar{D}MSO)_8]^{3+}$ with the negative one found for $[Gd(H_2O)_8]^{3+}$ shows that activation modes for solvent exchange are different: DMSO exchange follows a **d**-activation mode like that for DMF on Tb³⁺ and Dy^{3+} in contrast to H_2O exchange, which proceeds with an **a**-activation mode.

4.2. Water Exchange on Trivalent Lanthanide Complexes

Studies of water exchange on lanthanide and especially on Gd^{3+} complexes with one to several H_2O molecules bound in the first coordination shell of the ion have become an important research issue in the past decade. Very stable complexes of Gd^{3+} with multidentate ligands are commonly used as contrast agents in medical magnetic resonance imaging (MRI), and optimizing water exchange on those complexes is a key to higher relaxivity agents.²⁷³ Because these studies deal with solvent exchange on a metal ion, which is the subject of this review, we have included data on H_2O exchange on complexes of the form $[Ln(L)(H₂O)_n]^{z+/-}$ (Table 17).

Before discussing some general observations on lability and water exchange mechanisms on these complexes, we would like to comment on experimental determination of k_{ex} and its activation parameters. A direct way to determine water exchange rate constants as a function of temperature and pressure is ¹⁷O NMR.⁴⁰ Measuring the temperature dependence of the increase of transverse 17O NMR relaxation rates of bulk water, $1/T_{2r}$, induced by the presence of the paramagnetic complex [Ln(L)- $(\mathrm{H_2O})_n$] $^{z+/-}$ gives access to k_ex . 274 For Gd $^{3+}$ complexes such as $[Gd(DTPA)(H_2O)]^{2-}$, $[Gd(DTPA-BMA)(H_2O)],$ or $[Gd(DOTA)(H_2O)]^-$, several independent ¹⁷O NMR relaxation and chemical shift studies were performed showing that exchange rate constants can be determined with an accuracy of $\pm 20\%$. In the case of extremely fast water exchange processes with *^k*ex > 10^8 s⁻¹, exchange rate constants can be determined if besides $1/T_{2r}$ the chemical shift changes, $\Delta \omega_r$, of the bulk water 17O NMR signal are measured, which allows the determination of the scalar coupling constant A/h .⁴⁰ The accuracy of k_{ex} measurement depends in this case on the difference between *k*ex and the relaxation of the $\frac{7}{2}$ electron spin of Gd³⁺.²⁶¹ In principle, 1H relaxation measured over a wide range of magnetic field, leading to nuclear magnetic relaxation dispersion (NMRD) profiles, is also influenced by water and/or water proton exchange.^{275,276} Because 1H relaxation is enhanced not only via first shell water molecules but also by second shell and outer sphere relaxation, it is by far less reliable to

 $\mathsf{R}_1\text{ = }(\mathsf{CH}_2)_2\mathsf{CH}_3;\ \mathsf{R}_2\text{ = }(\mathsf{CH}_2)_2\mathsf{CH}_3$

 $R = CH(CH₃)Ph$

Table 17 (Continued)

^a First-order rate constant for the exchange of a particular coordinated solvent molecule.5 *^b* Analysis of 17O NMR data only. *^c* Combined analysis of EPR and 1H and 17O NMR data (Solomon-Bloembergen-Morgan theory277). *^d* Combined analysis of EPR and ¹H and ¹⁷O NMR data (EPR relaxation following Rast et al. ^{339,340}). ^{*e*} Calculated from *k*²⁹⁸ and ∆*H*⁺. *f* Calculated from ∆*H*⁺ and ΔS^* . ^g From ¹⁷O relaxation in CH₃CN solution. *h* From ¹⁷O relaxation in H₂O solution. *i* From combined ¹⁷O and ¹H NMR analysis in CD₃CN solution. *k* From ¹H NMR in CD₃CN solution. *m* The value originally published for CN = 8 in ref 260 was corrected for $CN = 7$ in ref 4.

extract exchange rate constants from NMRD profiles than from 17O relaxation. Therefore, we report in Table 17 data from 17O NMR studies or from combined analysis of 17O NMR, 1H NMRD, and, eventually, EPR studies.

Water exchange rate constants reported for different Gd^{3+} complexes cover a range of more than 5 orders of magnitude, from the lowest for [Gd(DOTA- $(4AmP)(H_2O)$ ⁵⁻ ($k_{ex} = 4 \times 10^3$ s⁻¹)³³² to the highest $(k_{\rm ex} = 8 \times 10^8 \,\rm s^{-1})^{261,277}$ for the aqua ion itself. When the first water exchange rate constants on Gd^{3+} polyaminocarboxylate complexes were measured, it was a great surprise that they were much slower than those on $[Gd(H_2O)_8]^{3+}$. For complexes with one water molecule in the first coordination shell, the exchange reaction proceeds, if the ligand is octadentate, through a **d**-activated mechanism, leading to a positive activation volume (Table 17). The mostly observed nine-coordinate geometry does not allow the transition state to accommodate a ten-coordinate geometry due to steric constraints: the coordination cage formed by the polyaminocarboxylate ligands renders the first shell of Gd^{3+} very rigid. This is not in favor of rearrangements around the metal center on going to the transition state, as is possible for the aqua ion, for example. Since there is no possibility for an incoming water molecule to help break the bond between the leaving water molecule and the trivalent metal center, the activation energy barrier is high and reduces the water exchange rate constant of polyaminocarboxylate complexes compared to the one on $[\text{Gd}(H_2O)_8]^{3+}$ up to 1 to 4 orders of magnitude.

Steric crowding is an important issue to influence the water exchange rate on polyaminocarboxylate complexes of Gd^{3+} , as can be seen from modifications of the commercial acyclic DTPA and cyclic DOTA ligands. Addition of one more CH_2 group, in the macrocyclic or linear amine backbone, to give respectively the TRITA or the EPTPA, generates Gd^{3+} complexes with significantly faster water exchange.285 For the cyclic TRITA, the steric compression also increases the distance between the plane of the carboxylate oxygens and the metal (83 pm in $[\text{Gd}(\text{TRITA})(\text{H}_2\text{O})]^-$ versus 70 pm in $[\text{Gd}(\text{DOTA})$ - (H_2O)]⁻). Since the Gd-O_{water} distance is similar in

the two complexes (248 pm in TRITA and 245 pm in DOTA), the final result is that the bound water molecule in $[Gd(TRITA)(H_2O)]^-$ is much closer to the negatively charged carboxylates, which also facilitates its departure.285 The water exchange mechanisms assigned from the measured activation volumes are dissociative interchange I_d for $[Gd(EPTPA)-]$ $(H_2O)^{2-}$ and interchange **I** for $[Gd(TRITA)(H_2O)]^{-}$. For the latter there is a strong participation of the incoming water in the rate-determining step which, in addition to the repulsive effect of the close carboxylates on the bound water, contributes to the increase of the water exchange rate. DTTA-prop⁵⁻, which has an additional $CH₂$ group on the central acetate, has also been studied. Water exchange on $[Gd(DTTA-prop)(H₂O)]²⁻$ is 1 order of magnitude faster than that on $[Gd(DTPA)(H_2O)]^{2-}$ but 1 order of magnitude slower than that for [Gd(EPTPA)- $(H_2O)]^{2-}$.²⁸⁵ This implies that elongation of the amine backbone is more effective to produce a crowding effect on the metal than the elongation of the acetate arms. Adding two $CH₂$ groups on the backbone of $DTPA$,⁵⁻ leading to the ligand $DPTPA$ ⁵⁻, results in the elimination of the water molecule from the inner sphere (see Figure 11).

While the water exchange rate is strongly affected when coordinating groups or the overall charges are changed, it remains relatively constant on introducing different substituents which do not directly interfere in the inner coordination shell. Very similar rates have been reported for the different bisamide DTPA derivatives DTPA-BA, DTPA-BMA, DTPA-BEA, etc.281,282,296,297 Likewise, even bulky substituents on the carbon backbone of the DTPA have almost no influence on the water exchange kinetics: $k_{\rm ex}$ is similar for the Gd $^{3+}$ complexes of DTPA, EOB-DTPA, COPTA, and MP-2269.279,289,293,341 Therefore, forming dimeric or multimeric species from the same chelating unit does in general not influence to a great extent the lability of bound water molecules.274 For example, *k*ex values measured on dimers formed with the chelating unit DO3A are, within <10%, the same as that of the monomer $[Gd(DO3A-bz-NO₂)(H₂O)]^{.277}$ Dendrimers based on the same chelating unit DO3A $bz-NO₂$ having between 23 and 52 $Gd³⁺$ ions bound

Figure 11. Schematic representation of the influence on water exchange rate (at 298.15 K) of the crowding effect around the metal due to the elongation of the acetate arm or the amine backbone of DTPA⁵⁻.

to their surface, depending on the generation of the dendrimer, also exchange bound water molecules with $(1.0-1.6) \times 10^6$ s⁻¹, which is very close to the value measured for the monomer $(1.6 \times 10^6 \text{ s}^{-1})$.³¹⁷

Gadolinium polyaminocarboxylate chelates exist in aqueous solution as a mixture of geometric isomers. In the case of macrocyclic ligands derived from cyclen, two isomers are found: a minor one called *m* (twisted antiprismatic geometry) and a major one called *M* $(antiprismatic geometry).$ ^{321,325-327} Water exchange rate constants could be measured on both isomers of DOTA-tetraamides and were found to be much larger for the *m* isomer and independent of the ligand within the family of DOTA-tetraamides studied.³²⁸

Complexes with two water molecules in the first $\text{coordination shell}, q = 2, \text{ such as } [\text{Gd}(\text{PDTA})-\text{H}_2\text{O}_2]^{-,261} [\text{Gd}(\text{DO3A})(\text{H}_2\text{O}_2)]^{,308} \text{ or } [\text{Gd}(\text{TREN})-\text{bis}(6-1)]$ $Me-HOPO$)-(TAM-TRI)(H_2O)₂]⁻,³⁰³ can have faster water exchange than those with $q = 1$. This is observed for the PDTA and TREN-bis(6-Me-HOPO)- (TAM-TRI) complexes. Activation volumes measured for water exchange on those compounds are negative, indicating an **a**-activated mechanism with a lower energy barrier compared to that for dissociation of H2O. The value of *k*ex for water exchange on the macrocyclic DO3A complex is, however, only twice as much as that for exchange on $[\text{Gd}(\text{DOTA})(\text{H}_2\text{O})]$. This is commonly explained by the much more rigid structure of the macrocyclid ligand DO3A if compared, for example, to the acyclic PDTA. On the dimeric compound $[\text{Gd}_2(\text{bisoxa})(\text{DO3A})_2(\text{H}_2\text{O})_2]$ formed from two DO3A subunits, a positive ΔV^* has been measured,277 illustrating that the rigidity of the chelating unit does not allow substantial participation of an incoming water molecule in the exchange process.

As for aqua ions of lanthanide ions, water exchange on polyaminocarbocylate complexes varies across the lanthanide series. Increasing water exchange rates have been reported for $[Ln(DTPA-BMA)(H₂O)]$ from Ln = Nd to Ho (Table 17).^{282,284} The measured ΔV^* revealed a change in mechanism for the water exchange reaction from an associative interchange I_a to a dissociative I_d mechanism. A strong change in lability of the bound water molecule along the Ln^{3+} series was also observed for complexes of DOTAtetraamide ligands.322

4.3. Solvent Exchange on Divalent Lanthanide Ions and Divalent Lanthanide Complexes

Up to now, Eu^{2+} is the only divalent aqua ion studied kinetically in solution. The main interest for studying this redox instable ion comes from its potential use as a "smart" contrast agent for MRI. It is relatively stable in oxygen-free solutions, and it is isoelectronic to $Gd^{3+}.^{342}$ The goal of the research is to synthesize complexes of Eu^{2+} which are thermodynamically stable in the divalent and in the trivalent states in order to have a contrast agent responsive to local O_2 concentration, for example. The coordination number in solution of the aqua complex has been determined to be 7.2 by EXAFS.⁴ Water exchange on $[Eu(H_2O)_7]^{2+}$ is faster than that on $[\text{Gd}(H_2O)_8]^{3+}$ and is the fastest ever directly measured by 17 O NMR (Table 15).^{3,260} The value of -11.3 cm³ mol⁻¹ measured for ΔV^{\dagger} is more negative than those determined on trivalent lanthanide aqua ions. This clearly indicates an **a**-activated exchange process with most probably a limiting **A** mechanism. The coordination number of 7.2 indicates an equilibrium between a predominant $[Eu(H_2O)_7]^{2+}$ and a minor $[Eu(H₂O)₈]^{2+}$ species.⁴ The presence of such an equilibrium at room temperature indicates that the energy barrier for the water exchange reaction on the major seven-coordinate species is low and the water exchange reaction is very fast.

Complexes of Eu^{2+} are normally less redox stable than the aqua ion. Measurements of the redox potentials show that the macrocyclic [Eu(ODDA)- H_2O], [Eu(ODDM)(H₂O)]²⁻, and [Eu(DOTA)(H₂O)]²⁻ complexes are more redox stable than the acyclic $[Eu(DTPA)(H₂O)]³$ ⁻.³⁴² The Eu²⁺ complexes of the macrobicyclic cryptand (2.2.2) are even more stable than the aqua ion. 343 As a consequence of the lower charge and the larger ionic radius of Eu^{2+} compared to Gd^{3+} , the water exchange constants on Eu^{2+} polyaminocarboxylate complexes are of the same order of magnitude as that of $[Eu(H_2O)_7]^{2+}$. For $[Eu(DTPA)(\tilde{H_2}O)]^{3-}$, the $k_{ex}(298K)$ value is only reduced by a factor of 4,³³⁶ and the water exchange rate on $[Eu(DOTA)(H_2O)]^{2-}$ is the highest among all the $Eu²⁺ complexes and is just about half of the water$ exchange rate on $\text{[Eu}(\text{H}_2\text{O})_7\text{]}^{2+}$ (Table 17).³⁴⁴

The activation mode for water exchange on Eu^{2+} chelates depends on the macrocyclic ligand. From the smaller activation volume it was concluded that water exchange on $\text{[Eu(DTPA)(H₂O)]}^{3-}$ ($\Delta V^{\ddagger} = +4.5$) cm^3 mol⁻¹) proceeds according to an I_d mechanism as compared to a **D** mechanism for $[\text{Gd}(\text{DTPA})(\text{H}_2\text{O})]^{2-}$ $(\Delta V^{\dagger} = +12.5$ cm³ mol⁻¹). This reveals less steric crowding around the larger and divalent Eu^{2+} . The value of ΔV^* measured for water exchange on the 18membered macrocyclic $[Eu(ODDA)(H_2O)]^{335}$ is slightly negative, and an **Ia** mechanism was assigned (Table 17). The $[Eu(ODDA)(H₂O)]$ complex is peculiar: from analogy to the crystal structure of the corresponding $Sr²⁺$ complex, it is assumed that coordination of the water molecule and the carboxylate groups occurs at opposite sides of the molecule.335 The water coordinating site, located at the hydrophobic side, is therefore much more open in the $ODDA^{2-}$ than in the DTP A^{5-} complex, for example. It can therefore accommodate a second water molecule in the inner shell without the preceding departure of the leaving water molecule.

In the cryptate $[Eu(2.2.2)(H_2O)_2]^{2+}$, the encapsulated metal ion is 10 coordinate and has two inner shell water molecules.338,344 The exchange rate constant is the lowest of all Eu^{2+} chelates measured so far, which is probably due to the positive charge. The value of ΔV^{\dagger} is close to zero (Table 17), and therefore, an **I** mechanism was assigned for the water exchange process.

4.4. Actinides

Compared to water exchange studies on the lanthanide series, equivalent studies on actinide ions are very scarce. The most studied cation, which is also the most easy to manipulate, is UO_2^{2+} . Water exchange on the diamagnetic $[UO₂(H₂O)₅]^{2+}$, which has D_{5h} geometry, was studied by ¹⁷O NMR using Tb³⁺ as chemical shift reagent (Table 18).³⁴⁵ An **I**_d mechanism was proposed for the water exchange process from comparison of experimental data with quantum chemical calculations. However, Vallet et al. assigned from pure quantum mechanical results an **I** or **A** mechanism for water exchange on ${\rm [UO_2(H_2O)_5]^{2+}}$.³⁴⁶ In the same paper an **A** mechanism was assigned to water exchange on $[UO_2(C_2O_4)_2(H_2O)]^{2-}$. The geometries calculated for **A** and **I** mechanisms on

Table 18. Rate Constants and Activation Parameters for Water Exchange on Actinides or Actinyl Aqua Ions*^g*

complex	$k_1(298K)^a$	ΛH^{\ddagger}	ΔS^{\ddagger}	mech ref	
$[Th(H_2O)_{10}]^{4+}$	$> 5 \times 10^{7}$				348
$[Th(H2O)9]$ ⁴⁺	2.4×10^{9}				349
	(2nd sphere)				
$[U(H_2O)_{10}]^{4+}$	$\sim 5 \times 10^6$	${\sim}35$	~ 0		348
$[U(F)(H_2O)_9]^{4+}$	5×10^6	36	$+2.5$		348
$[UO2(H2O)5]2+$	1.4×10^{6}	38	-12		350
	1.3×10^{6}	26.1	-40	I or $A\ell$ 345	
$[UO2(H2O)5]$ ²⁺	11.8×10^{3}	32	-60		347
	460×10^{3} c	31.7	-30		347
$[UO2(C2O4)2(H2O)]2$				${\bf A}$ f	346
$[UO_2(C_2O_4)(F)(H_2O)_2]$ ⁻ 1.8 × 10 ⁴		45.4	-11.3		345
$[NpO2(H2O)5]2+$	5.3×10^{6} d		$20.2 -72$		347
$[PuO2(H2O)n]$ ²⁺	5.7×10^{4} e	12	-115		347

^a First-order rate constant for the exchange of a particular coordinated solvent molecule.⁵ *b* Solution composition: $MO_2^{2+}/$ H⁺/H₂O/acetone = 1/0.57/69.1/177.9. *c* Solution composition:
MO₂²⁺/H⁺/H₂O/acetone = 1/4.1/86.9/161.6. *d* Solution composi-
tion: MO₂²⁺/H⁺/H₂O/acetone = 1/3.8/78.7/153.4. *e* Solution comtion: MO₂²⁺/H⁺/H₂O/acetone = 1/3.8/78.7/153.4. *e* Solution com-
position: MO₂²⁺/H⁺/H₂O/acetone = 1/2.2/67.3/174.7. *f* By quanposition: $MO_2^{2+}/H^+/H_2O/accelone = 1/2.2/67.3/174.7. f'By quantum chemical methods. \n ℓ Units are as follows: \n $k_1(2.98K)$, 10⁷$ tum chemical methods. *^g* Units are as follows: *k*1(298K), 107 s^{-1} ; ΔH^* , kJ mol⁻¹; ΔS^* , J K⁻¹ mol⁻¹.

 $[UO_2(H_2O)_5]^{2+}$ and on $[UO_2(C_2O_4)_2(H_2O)]^{2-}$ indicate that the entering and the leaving water molecules are located outside the pentagonal plane formed by the spectator ligands.346 In Table 18 water exchange rate constants measured on $[UO₂(H₂O)₅]^{2+}$, $[NpO₂-]$ $(H_2O)_5]^{2+}$, and $[PuO_2(H_2O)_5]^{2+}$ in H_2O /acetone mixtures at low temperature and extrapolated to 298 K on are given.³⁴⁷ As the ΔS^* values become more negative with increasing atomic number, a mechanism with more pronounced associative character was proposed for the compounds with heavier metal centers.

For the tetravalent U^{4+} and Th⁴⁺, the first experimental kinetic studies on water exchange have been conducted recently.345,348,349 The coordination numbers for these two complexes were determined by EXAFS as $CN = 10 \pm 1.351$ On the basis of the high coordination number (there are no complexes known with unidentate ligands and coordination numbers larger than 10), a limiting associative mechanism (**A**) is unlikely and a **d**-activated mechanism is probable. Surprisingly, the coordination of one fluoride or one hydroxide to U(IV) had no detectable effect on the water exchange rate.

5. Glossary

6. Acknowledgment

The authors gratefully acknowledge financial support from the Swiss National Science Foundation and the Swiss Office for Education and Science (COST Program). Furthermore, we wish to thank the large number of people who have contributed over the years to the work performed in Lausanne.

7. References

- (1) Richens, D. T. *The Chemistry of Aqua Ions*; John Wiley & Sons: Chichester, 1997.
- (2) Cusanelli, A.; Frey, U.; Richens, D. T.; Merbach, A. E. *J. Am. Chem. Soc.* **1996**, *118*, 5265.
- (3) Caravan, P.; Tóth, É.; Rockenbauer, A.; Merbach, A. E. J. Am. *Chem. Soc.* **1999**, *121*, 10403.
- (4) Moreau, G.; Helm, L.; Purans, J.; Merbach, A. E. *J. Phys. Chem. A* **2002**, *106*, 3034.
- (5) Lincoln, S. F.; Merbach, A. E. *Adv. Inorg. Chem.* **1995**, *42*, 1.
- (6) Dunand, F. A.; Helm, L.; Merbach, A. E. *Adv. Inorg. Chem.* **2003**, *54*, 1.
- (7) Radnai, T. *J. Mol. Liq.* **¹⁹⁹⁵**, *⁶⁵*-*6*, 229.
- (8) Smirnov, P.; Wakita, H.; Yamaguchi, T. *J. Phys. Chem. B* **1998**, *102*, 4802.
- Pasquarello, A.; Petri, I.; Salmon, P. S.; Parisel, O.; Car, R.; Tóth, ^EÄ .; Powell, D. H.; Fisher, H. E.; Helm, L.; Merbach, A. E. *Science* **2001**, *291*, 856.
- (10) Grundler, P. V.; Laurenczy, G.; Merbach, A. E. *Helv. Chem. Acta* **2001**, *84*, 2854.
- (11) Lippard, S. J.; Berg, J. M. *Principles of Bioinorganic Chemsitry*; University Science Books: Mill Valley, 1994.
- (12) *The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging*; Merbach, A. E., Toth, É., Eds; John Wiley & Sons: Chichester, 2001.
- (13) Helm, L.; Merbach, A. E. In *High-Pressure Chemistry*; van Eldik,
R., Klärner, F.-G., Eds.; Wiley-VCH: Weinheim, 2002. p 131.
- (14) Langford, C. H.; Gray, H. B. *Ligand Substitution Porcesses*; W.
- A. Benjamin, Inc.: New York, 1965.
- (15) Merbach, A. E. *Pure Appl. Chem.* **1982**, *54*, 1479. (16) Merbach, A. E. *Pure Appl. Chem.* **1987**, *59*, 161.
- (17) Pittet, P.-A.; Elbaze, G.; Helm, L.; Merbach, A. E. *Inorg. Chem.* **1990**, *29*, 1936.
- (18) Ravage, D. K.; Stengle, T. R.; Langford, C. H. *Inorg. Chem.* **1967**, *6*, 1252.
- (19) Matwiyoff, N. A.; Hooker, S. V. *Inorg. Chem.* **1967**, *6*, 1127.
- (20) O'Brien, J. F.; Reynolds, W. L. *Inorg. Chem.* **1967**, *6*, 2110. (21) Campbell, I. D.; Dwek, R. A.; Richards, R. E. *Mol. Phys.* **1971**, *20*, 933.
-
- (22) Lincoln, S. F.; West, R. J. *Aust. J. Chem.* **1973**, *26*, 255. (23) Kapur, V. K.; Wayland, B. B. *J. Phys. Chem.* **1973**, *77*, 634.
- (24) Newman, K.; Meyer, F. K.; Merbach, A. E. *J. Am. Chem. Soc.* **1979**, *101*, 1470.
- (25) Yano, Y.; Fairhurst, M.; Swaddle, T. W. *Inorg. Chem.* **1980**, *19*, 3267.
- (26) Ishii, M.; Funahashi, S.; Ishihara, K.; Tanaka, M. *Bull. Chem. Soc. Jpn* **1989**, *62*, 1852.
- (27) Hunt, H. R.; Taube, H. *J. Am. Chem. Soc.* **1958**, *80*, 2642. (28) Swaddle, T. W.; Stranks, D. R. *J. Am. Chem. Soc.* **1971**, *93*, 2783.
- (29) *Inorganic High-Pressure Chemistry: Kinetics and Mechanisms*;
- van Eldik, R., Ed; Elsevier: Amsterdam, 1986. (30) *High-Pressure Chemistry*; van Eldik, R., Klärner, F.-G., Eds.; Wiley-VCH: Weinheim, 2002.
-
- (31) Whalley, E. *Adv. Phys. Org. Chem.* **1964**, *2*, 93. (32) Eckert, C. A. *Annu. Rev. Phys. Chem.* **1972**, *23*, 239.
-
- (33) Stranks, D. R. *Pure Appl. Chem.* **1974**, *38*, 303. (34) van Eldik, R. In *Inorganic High-Pressure Chemistry*; van Eldik, R., Ed.; Elsevier: Amsterdam, 1986; p 1.
- (35) Palmer, D. A.; Kelm, H. *Coord. Chem. Rev.* **1981**, *36*, 89.
-
- (36) Swaddle, T. W.; Mak, M. K. S. *Can. J. Chem.* **1983**, *61*, 472. (37) Swaddle, T. W. *Adv. Inorg. Bioinorg. Mech.* **1983**, *2*, 95.
- (38) Shannon, R. D. *Acta Crystallogr., Sect. A* **1976**, *32*, 751.
- (39) Sandström, J. *Dynamic NMR Spectroscopy*; Academic Press: London, 1982.
- (40) Helm, L.; Nicolle, G. M.; Merbach, A. E. *Adv. Inorg. Chem.* **2005**, *57*, 327.
- (41) Helm, L.; Merbach, A. E.; Powell, D. H. In *High-pressure Techniques in Chemistry and Physics*—A *practical Approach*;
Holzapfel, W. B., Isaacs, N. S., Eds.; Oxford University Press: Oxford, 1997; Vol. 2, p 187.
- (42) Helm, L.; Merbach, A. E. *J. Chem. Soc., Dalton Trans.* **2002**, 633.
- (43) Helm, L.; Laurenczy, G. In *Catalytic Mechanisms from Spectroscopic Measurements*; Heaton, B. T., Ed.; Wiley-VCH: Weinheim, 2005; p 81.
- (44) Salmon, P. S.; Lond, P. B. *Physica B* **1992**, *182*, 421.
- (45) Salmon, P. S. *Physica B* **1989**, *156 & 157*, 129. (46) Lincoln, S. F.; Tkaczuk, M. N. *Ber. Bunsen-Ges. Phys. Chem.*
- **1981**, *85*, 433. (47) Delpuech, J.-J.; Peguy, A.; Rubini, P.; Steinmetz, J. *Nouv. J. Chim.* **1977**, *1*, 133.
- (48) Tkaczuk, M. N.; Lincoln, S. F. *Ber. Bunsen-Ges. Phys. Chem.* **1982**, *86*, 147.
- (49) Lincoln, S. F.; Tkaczuk, M. N. *Ber. Bunsen-Ges. Phys. Chem.* **1982**, *86*, 221.
- (50) Bleuzen, A.; Pittet, P.-A.; Helm, L.; Merbach, A. E. *Magn. Reson. Chem.* **1997**, *35*, 765.
- (51) Nakamura, S.; Meiboom, S. *J. Am. Chem. Soc.* **1967**, *89*, 1765.
- (52) Alger, T. D. *J. Am. Chem. Soc.* **1969**, *91*, 2220.
- (53) Furrer, P.; Frey, U.; Helm, L.; Merbach, A. E. *High-Pressure Res.* **1991**, *7*, 144. (54) Pisaniello, D. L.; Lincoln, S. F. *Aust. J. Chem.* **1979**, *32*, 715.
- (55) Pisaniello, D. L.; Lincoln, S. F.; Williams, E. H. *Inorg. Chim.*
- *Acta* **1978**, *31*, 237. (56) Pisaniello, D. L.; Nichols, P. J.; Ducommun, Y.; Merbach, A. E.
- *Helv. Chim. Acta* **1982**, *65*, 1025. (57) Hugi Cleary, D.; Helm, L.; Merbach, A. E. *Helv. Chim. Acta* **1985**,
- *68*, 545. (58) Kowall, T.; Caravan, P.; Bourgeois, H.; Helm, L.; Rotzinger, F. P.; Merbach, A. E. *J. Am. Chem. Soc.* **1998**, *120*, 6569.
- (59) Nordin, J. P.; Sullivan, D. J.; Phillips, B. L.; Casey, W. H. *Inorg.*
- Chem. **1998**, 37, 4760.

(60) Phillips, B. L.; Casey, W. H.; Crawford, S. N. *Geochim. Cosmochim. Acta* **1997**, 61, 3041.
 chim. Acta 1997, 61, 3041.

(61) Yu, P.; Phillips, B. L.; Casey, W. H. *Inorg. Chem.* **2001**, 4
-
- (62) Phillips, B. L.; Crawford, S. N.; Casey, W. H. *Geochim. Cosmochim. Acta* **1997**, *61*, 4965. (63) Casey, W. H.; Phillips, B. L.; Nordin, J. P.; Sullivan, D. J.
-
- *Geochim. Cosmochim. Acta* **1998**, *62*, 2789. (64) Yu, P.; Phillips, B. L.; Olmstead, M. M.; Casey, W. H. *J. Chem. Soc., Dalton Trans.* **2002**, 2119.
- (65) Sullivan, D. J.; Nordin, J. P.; Phillips, B. L.; Casey, W. H. *Geochim. Cosmochim. Acta* **1999**, *63*, 1471.
- (66) Casey, W. H.; Phillips, B. L.; Karlsson, M.; Nordin, S.; Nordin, J. P.; Sullivan, D. J.; Neugebauer, S. *Geochim. Cosmochim. Acta* **2000**, *64*, 2951.
- (67) Phillips, B. L.; Casey, W. H.; Karlsson, M. *Nature* **2000**, *404*, 379.
- (68) Casey, W. H.; Phillips, B. L. *Geochim. Cosmochim. Acta* **2001**, *65*, 705.
- (69) Lee, A. P.; Phillips, B. L.; Casey, W. H. *Geochim. Cosmochim. Acta* **2002**, *66*, 577.
- (70) Ammann, C.; Moore, P.; Merbach, A. E.; McAteer, C. H. *Helv. Chim. Acta* **1980**, *63*, 268.
- (71) Merbach, A. E.; Moore, P.; Howath, O. W.; McAteer, C. H. *Inorg. Chim. Acta* **1980**, *39*, 129.
- (72) Delpuech, J.-J.; Khaddar, M. R.; Peguy, A. A.; Rubini, P. R. *J. Am. Chem. Soc.* **1975**, *97*, 3373.
- (73) Hugi Cleary, D.; Helm, L.; Merbach, A. E. *J. Am. Chem. Soc.* **1987**, *109*, 4444.
- (74) Roderhu¨ser, L.; Rubini, P. R.; Delpuech, J.-J. *Inorg. Chem.* **1977**, *16*, 2837.
- (75) Helm, L.; Ammann, C.; Merbach, A. E. *Z. Phys. Chem. (Muenchen)* **1987**, *155*, 145.
- (76) Pisaniello, D. L.; Lincoln, S. F.; Williams, E. H. *J. Chem. Soc., Dalton Trans.* **1979**, 1473.
- (77) Pisaniello, D. L.; Lincoln, S. F. *Inorg. Chim. Acta* **1979**, *36*, 85. (78) Pisaniello, D. L.; Lincoln, S. F. *J. Chem. Soc., Dalton Trans.*
- **1980**, 699. (79) Glass, G. E.; Schwabacher, W. B.; Tobias, S. R. *Inorg. Chem.*
- **1968**, *7*, 2471.
- (80) Swaddle, T. W. *Comments Inorg. Chem.* **1991**, *12*, 237.
- (81) Phillips, B. L.; Lee, A.; Casey, W. H. *Geochim. Cosmochim. Acta* **2003**, *67*, 2725.
- (82) Casey, W. H.; Swaddle, T. W. *Rev. Geophys.* **2003**, *41*, 4/1.
- (83) Spees, S. T.; Perumareddi, J. R.; Adamson, A. W. *J. Phys. Chem.* **1968**, *72*, 1822.
- (84) Ducommun, Y.; Zbinden, D.; Merbach, A. E. *Helv. Chim. Acta* **1982**, *65*, 1385.
- (85) Li, C.; Jordan, R. B. *Inorg. Chem.* **1987**, *26*, 3855.
- (86) Ducommun, Y.; Newman, K. E.; Merbach, A. E. *Inorg. Chem.* **1980**, *19*, 3696.
- (87) Meyer, F. K.; Newman, K.; Merbach, A. E. *J. Am. Chem. Soc.* **1979**, *101*, 5588.
- (88) Breivogel, F. *J. Chem. Phys.* **1969**, *51*, 445.
- (89) Cossy, C.; Helm, L.; Merbach, A. E. *Helv. Chim. Acta* **1987**, *70*, 1516.
- (90) Ishii, M.; Funahashi, S.; Tanaka, M. *Chem. Lett.* **1987**, 871. (91) Fielding, L.; Moore, P. *J. Chem. Soc., Chem. Commun.* **1988**,
- 49. (92) Boubel, J. C.; Delpuech, J.-J. *Adv. Mol. Relax. Processes* **1975**,
- *7*, 209. (93) Chen, T.-M.; Morgan, L. O. *J. Phys. Chem.* **1972**, *72*, 1973.
- (94) Hioki, A.; Funahashi, S.; Ishii, M.; Tanaka, M. *Inorg. Chem.*
- **1986**, *25*, 1360.
- (95) Ishii, M.; Funahashi, S.; Tanaka, M. *Inorg. Chem.* **1988**, *27*, 3192. (96) Sisley, M.; Yano, Y.; Swaddle, T. W. *Inorg. Chem.* **1982**, *21*, 1141.
- (97) Inada, Y.; Sugata, T.; Ozutsumi, K.; Funahashi, S. *Inorg. Chem.* **1998**, *37*, 1886.
- (98) Purcell, W. L.; Marianelli, R. *Inorg. Chem.* **1970**, *9*, 1724.
- (99) Vigee, G. S.; Watkins, C. L.; Harris, M. E. *J. Inorg. Nucl. Chem.* **1980**, *42*, 1441.
- (100) Aizawa, S.; Matsuda, K.; Tajima, T.; Maeda, M.; Sugata, T.;
- Funahashi, S. *Inorg. Chem.* **1995**, *34*, 2042. (101) Aizawa, S.-I.; S., I.; Matsuda, K.; Funahashi, S. *Bull. Chem. Soc. Jpn* **1997**, *70*, 1593.
- (102) Luz, Z.; Meiboom, S. *J. Chem. Phys.* **1964**, *40*, 2686.
- (103) Monnerat, A. R.; Moore, P.; Newman, K.; Merbach, A. E. *Inorg. Chim. Acta* **1981**, *47*, 139.
- (104) Matwiyoff, N. A. *Inorg. Chem.* **1966**, *5*, 788.
- (105) McAteer, C. H.; Moore, P. *J. Chem. Soc., Dalton Trans.* **1983**, 353.
- (106) Inada, Y.; Itoh, Y.; Kuwabara, H.; Funahashi, S. *Inorg. React. Mech.* **2000**, *2*, 161.
- (107) Aizawa, S.-I.; Iida, S.; Matsuda, K.; Funahashi, S. *Inorg. Chem.* **1996**, *35*, 1338.
- (108) Aizawa, S.; Funahashi, S. *Inorg. Chem.* **2002**, *41*, 4555.
- (109) Meyer, F. K.; Newman, K.; Merbach, A. E. *Inorg. Chem.* **1979**, *18*, 2142.
- (110) Frankel, L. S. *Inorg. Chem.* **1971**, *10*, 2360.
- (111) Babiec, J. S. J.; Langford, C. H.; Stengle, T. R. *Inorg. Chem.* **1966**, *5*, 1362.
- (112) Elias, H.; Schumacher, R.; Schwamberger, J.; Wittekopf, T.; Helm, L.; Merbach, A. E.; Ulrich, S. *Inorg. Chem.* **2000**, *39*, 1721.
- (113) Powell, D. H.; Helm, L.; Merbach, A. E. *J. Chem. Phys.* **1991**, *95*, 9258.
- (114) Helm, L.; Lincoln, S. F.; Merbach, A. E.; Zbinden, D. *Inorg. Chem.* **1986**, *25*, 2550.
- (115) Powell, D. H.; Furrer, P.; Pittet, P.-A.; Merbach, A. E. *J. Phys. Chem.* **1995**, *99*, 16622.
- (116) Inada, Y.; Ozutsumi, K.; Funahashi, S.; Soyama, S.; Kawashima, Y.; Tanaka, M. *Inorg. Chem.* **1993**, *32*, 3010. (117) Magini, M. *Inorg. Chem.* **1982**, *21*, 1535.
-
- (118) Magini, M.; Licheri, G.; Paschina, G.; Piccaluga, G.; Pinna, G. *X-ray Diffraction of Ion in Aqueous Solutions: Hydration and Complex Formation*; CRC Press: Boca Raton, 1988. (119) Ohtaki, H.; Radnai, T. *Chem. Rev.* **1993**, *93*, 1157. (120) Salmon, P. S.; Neilson, G. W.; Enderby, J. E. *J. Phys. C: Solid*
-
- *State Phys.* **1988**, *21*, 1335. (121) Persson, I.; Persson, P.; Sandström, M.; Ullström, A.-S. *J. Chem.*
- *Soc., Dalton Trans.* **2002**, 1256.
- (122) Benfatto, M.; D'Angelo, P.; Della Longa, S.; Pavel, N. V. *Phys. Rev. B* **2002**, *65*, 174205/1.
- (123) Hugi, A. D.; Helm, L.; Merbach, A. E. *Helv. Chim. Acta* **1985**, *68*, 508.
- (124) Hugi, A. D.; Helm, L.; Merbach, A. E. *Inorg. Chem.* **1987**, *26*, 1763.
- (125) Dellavia, I.; Helm, L.; Merbach, A. E. *Inorg. Chem.* **1992**, *31*, 2230.
- (126) Dellavia, I.; Sauvageat, P.; Helm, L.; Ducommun, Y.; Merbach, A. E. *Inorg. Chem.* **1992**, *31*, 792. (127) Xu, F. C.; Krouse, H. R.; Swaddle, T. W. *Inorg. Chem.* **1985**, *24*,
- 267.
- (128) Bleuzen, A.; Foglia, F.; Furet, E.; Helm, L.; Merbach, A. E.; Weber, J. *J. Am. Chem. Soc.* **1996**, *118*, 12777.
- (129) Bertini, I.; Fragai, M.; Luchinat, C.; Parigi, G. *Inorg. Chem.* **2001**, *40*, 4030.
- (130) Carle, D. L.; Swaddle, T. W. *Can. J. Chem.* **1973**, *51*, 3795.
- (131) Lo, S.; Swaddle, T. W. *Inorg. Chem.* **1975**, *14*, 1878. (132) Swaddle, T. W.; Merbach, A. E. *Inorg. Chem.* **1981**, *20*, 4212.
-
- (133) Grant, M. W.; Jordan, R. B. *Inorg. Chem.* **1981**, *20*, 55.
- (134) Meyer, F. K.; Monnerat, A. R.; Newman, K. E.; Merbach, A. E. *Inorg. Chem.* **1982**, *21*, 774.
- (135) Rotzinger, F. P. *J. Am. Chem. Soc.* **1997**, *119*, 5230.
- (136) Hartmann, M.; Clark, T.; van Eldik, R. *J. Phys. Chem. A* **1999**, *103*, 9899.
- (137) Kallen, T. W.; Earley, F. *Inorg. Chem.* **1971**, *10*, 1149.
- (138) Aebischer, N.; Laurenczy, G.; Ludi, A.; Merbach, A. E. *Inorg. Chem.* **1993**, *32*, 2810.
- (139) Rapaport, I.; Helm, L.; Merbach, A. E.; Bernhard, P.; Ludi, A. *Inorg. Chem.* **1988**, *27*, 873.
- (140) Ojo, J. F.; Olubuyide, O.; Oyetunji, O. *J. Chem. Soc., Dalton Trans.* **1987**, 957.
- (141) Pittet, P.-A.; Dadci, L.; Zbinden, P.; Abou-Hamdan, A.; Merbach, A. E. *Inorg. Chim. Acta* **1993**, *206*, 135.
- (142) Laurenczy, G.; Rapaport, I.; Zbinden, D.; Merbach, A. E. *Magn. Reson. Chem.* **1991**, S45.
-
- (143) Døssing, A.; van Lelieveld, A. *Inorg. Chim. Acta* **2001**, 322, 130.
(144) Plumb, W.; Harris, G. M. *Inorg. Chem.* **1964**, 3, 542.
(145) Swaminathan, K.; Harris, G. M. *J. Am. Chem. Soc.* **1966**, 88, 4411.
-
- (146) Buchacek, R. J.; Harris, G. M. *Inorg. Chem.* **1976**, 15, 926. (147) De Vito, D.; Sidorenkova, E.; Rotzinger, F. P.; Weber, J.; Merbach, A. E. *Inorg. Chem.* **2000**, 39, 5547. Devito, D. De Vito, D.; Weber, J.; Merb
- 858.
- (149) Bernhard, P.; Helm, L.; Ludi, A.; Merbach, A. E. *J. Am. Chem. Soc.* **1985**, *107*, 312.
- (150) Murmann, R. K. *Inorg. Chim. Acta* **1977**, *25*, L43.
- (151) Comba, P.; Merbach, A. E. *Inorg. Chem.* **1987**, *26*, 1315. (152) Johnson, M. D.; Murmann, R. *Inorg. Chem.* **1983**, *22*, 1068.
-
- (153) Dellavia, I.; Helm, L.; Merbach, A. E. *Inorg. Chem.* **1992**, *31*, 4151.
- (154) Wu¨ thrich, K.; Connick, R. E. *Inorg. Chem.* **1967**, *6*, 583.
- (155) Kuroiwa, Y.; Harada, M.; Tomiyasu, H.; Fukutomi, H. *Inorg.*
- *Chim. Acta* **1988**, *146*, 7. (156) Kim, J.-S.; Matsuda, T.; Harada, M.; Kim, S.-Y.; Park, S.-Y.;
- Tomiyasu, H.; Ikeda, Y. *Inorg. Chim. Acta* **1999**, *294*, 119. (157) Angerman, N. S.; Jordan, R. B. *Inorg. Chem.* **1969**, *8*, 1824.
- (158) Kaya, K.; Ikeda, Y.; Fukutomi, H. *Bull. Chem. Soc. Jpn* **1985**, *58*, 2648.
- (159) Harada, M.; Ikeda, S.; Tomiyasu, H.; Fukutomi, H. *Chem. Lett.* **1984**, 1195.
- (160) Jordan, R. B.; Angerman, N. S. *J. Chem. Phys.* **1968**, *48*, 3983.
- (161) Miller, G. A.; McClung, R. E. D. *Inorg. Chem.* **1973**, *12*, 2552. (162) Aime, S.; Anelli, P. L.; Botta, M.; Brocchetta, M.; Canton, S.;
- Fedeli, F.; Gianolio, E.; Terreno, E. *J. Biol. Inorg. Chem.* **2002**, *7*, 58.
- (163) Prinz, U.; Koelle, U.; Ulrich, S.; Merbach, A. E.; Maas, O.; Hegetschweiler, K. *Inorg. Chem.* **2004**, *43*, 2387. (164) Lincoln, S. F.; Hounslow, A. M.; Pisaniello, D. L.; Doddridge, B.
- G.; Coates, J. H.; Merbach, A. E.; Zbinden, D. *Inorg. Chem.* **1984**, *23*, 1090.

(167) Desai, A.; Dodgen, H. W.; Hunt, J. P. *J. Am. Chem. Soc.* **1969**,

(165) Wang, K.; Jordan, R. B. *Inorg. Chem.* **1995**, *34*, 5672. (166) Desai, A.; Dodgen, H. W.; Hunt, J. P. *J. Am. Chem. Soc.* **1970**,

(168) Hunt, J. P. *Coord. Chem. Rev.* **1971**, *7*, 1.

92, 798.

91, 5001.

- (169) Rablen, D. P.; Dodgen, H. W.; Hunt, J. P. *J. Am. Chem. Soc.* **1972**, *94*, 1771.
- (170) Coates, J. H.; Hadi, D. A.; Lincoln, S. F.; Dodgen, H. W.; Hunt, J. P. *Inorg. Chem.* **1981**, *20*, 707.
- (171) Moore, P. *Pure Appl. Chem.* **1985**, *57*, 347.
- (172) Grant, M.; Dodgen, H. W.; Hunt, J. P. *J. Am. Chem. Soc.* **1970**, *92*, 2321.
- (173) Rablen, D. P.; Gordon, G. *Inorg. Chem.* **1969**, *8*, 395.
- (174) Lincoln, S. F.; Aprile, F.; Dodgen, H. W.; Hunt, J. P. *Inorg. Chem.* **1968**, *7*, 929.
- (175) Jordan, R. B.; Dodgen, H. W.; Hunt, J. P. *Inorg. Chem.* **1966**, *5*, 1906.
- (176) Grant, M.; Dodgen, H. W.; Hunt, J. P. *J. Chem. Soc., Chem. Commun.* **1970**, 1446.
- (177) Fielding, L.; Moore, P. *J. Chem. Soc., Dalton Trans.* **1989**, 873.
- (178) West, R. J.; Lincoln, S. F. *Inorg. Chem.* **1973**, *12*, 494.
- (179) Neubrand, A.; Thaler, F.; Koerner, M.; Zahl, A.; Hubbard, C. D.; van Eldik, R. *J. Chem. Soc., Dalton Trans.* **2002**, 957. (180) Powell, D. H.; Merbach, A. E.; F'bi'n, I.; Schindler, S.; van Eldik,
- R. *Inorg. Chem.* **1994**, *33*, 4468. (181) Priimov, G. U.; Moore, P.; Helm, L.; Merbach, A. E. *Inorg. React.*
- *Mech.* **2001**, *3*, 1. (182) West, R. J.; Lincoln, S. F. *J. Chem. Soc., Dalton Trans.* **1974**,
- 281. (183) Lincoln, S. F.; Coates, J. H.; Doddridge, B. G.; Hounslow, A. M.;
- Pisaniello, D. L. *Inorg. Chem.* **1983**, *22*, 2869. (184) Gonzalez, G.; Moullet, B.; Martinez, M.; Merbach, A. E. *Inorg.*
- *Chem.* **1994**, *33*, 2330. (185) Bracken, D. E.; Baldwin, H. W. *Inorg. Chem.* **1974**, *13*, 1325.
-
- (186) Mønsted, L.; Mønsted, O. *Acta Chem. Scand.* **1982**, *A36*, 555.
- (187) Mønsted, L.; Mønsted, O. *Coord. Chem. Rev.* **1990**, *94*, 109.
- (188) Swaddle, T. W.; Stranks, D. R. *J. Am. Chem. Soc.* **1972**, *94*, 8357. (189) Crimp, S. J.; Spicca, L.; Krouse, H. R.; Swaddle, T. W. *Inorg.*
- *Chem.* **1994**, *33*, 465. (190) Schneppensieper, T.; Seibig, S.; Zahl, A.; Tregloan, P.; van Eldik,
- R. *Inorg. Chem.* **2001**, *40*, 3670. (191) Mizuno, M.; Funahashi, S.; Nakasuka, N.; Tanaka, M. *Inrog.*
- *Chem.* **1991**, *30*, 1550. (192) Schneppensieper, T.; Zahl, A.; van Eldik, R. *Angew. Chem., Int. Ed. Engl.* **2001**, *40*, 1678.
- (193) Ostrich, I. J.; Liu, G.; Dodgen, H. W.; Hunt, J. P. *Inorg. Chem.* **1980**, *19*, 619.
- (194) Mizuno, M.; Funahashi, S.; Nakasuka, N.; Tanaka, H. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 1988.
- (195) Kruse, W.; Taube, H. *J. Am. Chem. Soc.* **1961**, *83*, 1280.
- (196) Brasch, N. E.; Buckingham, D. A.; Clark, C. R.; Rogers, A. J. *Inorg. Chem.* **1998**, *37*, 4865.
- (197) Martin, D. F.; Tobe, M. L. *J. Chem. Soc.* **1962**, 1388.
- (198) Buckingham, D. A.; Clark, C. R.; Rogers, A. J.; Simpson, J. *Inorg. Chem.* **1998**, *37*, 3497.
- (199) Dadci, L.; Elias, H.; Frey, U.; Hornig, A.; Koelle, U.; Merbach, A. E.; Paulus, H.; Schneider, J. S. *Inorg. Chem.* **1995**, *34*, 306.
- (200) Bradley, S. M.; Doine, H.; Krouse, H. R.; Sisley, H. J.; Swaddle, T. W. *Aust. J. Chem.* **1988**, *41*, 1323.
- (201) Luginbühl-Brand, W.; Zbinden, P.; Pittet, P.-A.; Armbruster, T.; Bürgi, H. B.; Merbach, A. E.; Ludi, A. *Inorg. Chem.* **1991**, *30*, 2350.
- (202) Salignac, B.; Grundler, P. V.; Cayemittes, S.; Frey, U.; Scopelliti, R.; Merbach, A. E.; Hedinger, R.; Hegetschweiler, K.; Alberto, R.; Prinz, U.; Raabe, G.; Ko¨lle, U.; Hall, S. *Inorg. Chem.* **2003**, *42*, 3516.
- (203) Stebler-Röthlisberger, M.; Hummel, W.; Pittet, P.-A.; Bürgi, H. B.; Ludi, A.; Merbach, A. E. *Inorg. Chem.* **1988**, *27*, 1358.
- (204) Huynh, L. J.; Lasker, J. M.; Wetzler, M.; Mort, B.; Szczepura, L. F.; Witham, L. M.; Cintron, J. M.; Marschilok, A. C.; Ackerman, L. J.; Castellano, R. K.; Jameson, D. L.; Churchill, M. R.; Jircitano, A. J.; Takeuchi, K. J. *J. Am. Chem. Soc.* **2001**, *123*, 8780.
- (205) Aebischer, N.; Sidorenkova, E.; Ravera, M.; Laurenczy, G.; Osella, D.; Weber, J.; Merbach, A. E. *Inorg. Chem.* **1997**, *36*, 6009.
- (206) Meier, U. C.; Scopelliti, R.; Solari, E.; Merbach, A. E. *Inorg. Chem.* **2000**, *39*, 3816.
- (207) Rüba, E.; Simanko, W.; Mereiter, K.; Schmid, R.; Kirchner, K.
Inorg. Chem. **2000**, 39, 382.
- (208) Frey, U.; Li, Z. L.; Matras, A. *Inorg. Chem.* **1996**, *35*, 981.
- (209) Doine, H.; Ishihara, K.; Krouse, H. R.; Swaddle, T. W. *Inorg. Chem.* **1987**, *26*, 3240.
- (210) Mønsted, L.; Mønsted, O. *Acta Chem. Scand.* **1984**, *A38*, 67.
- (211) Drljaca, A.; Zahl, A.; van Eldik, R. *Inorg. Chem.* **1998**, *37*, 3948. (212) Drljaca, A.; Spiccia, L.; Krouse, H. R.; Swaddle, T. W. *Inorg.*
- *Chem.* **1996**, *35*, 985. (213) Cusanelli, A.; Nicula-Dadci, L.; Frey, U.; Merbach, A. E. *Inorg.*
- *Chem.* **1997**, *36*, 2211.
- (214) Tong, S. B.; Swaddle, T. W. *Inorg. Chem.* **1974**, *13*, 1538. (215) Glasbøl, F.; Mønsted, L.; Mønsted, O. *Acta Chem. Scand.* **1992**,
- *46*, 43.
- (216) Steigel, A.; Brownstein, S. *Inorg. Nucl. Chem.* **1976**, *Suppl.*, 145.
- (217) Turin, E.; Nielson, R. M.; Merbach, A. E. *Inorg. Chim. Acta* **1987**, *134*, 79.
- (218) Turin-Rossier, M.; Hugi Cleary, D.; Frey, U.; Merbach, A. E.
- *Inorg. Chem.* **1990**, *29*, 1374. (219) Favez, C. M. P.; Merbach, A. E. *Helv. Chem. Acta* **1977**, *60*, 2695.
- (220) Good, R.; Merbach, A. E. *Inorg. Chem.* **1975**, *14*, 1030.
- (221) Vanni, H.; Merbach, A. E. *Inorg. Chem.* **1979**, *18*, 2758. (222) Merbach, A. E.; Bu¨ nzli, J.-C. *Helv. Chem. Acta* **1972**, *55*, 1903.
- (223) Ruzicka, S. J.; Favez, C. M. P.; Merbach, A. E. *Inorg. Chim. Acta*
- **1977**, *23*, 239. (224) Knight, C. T. G.; Merbach, A. E. *Inorg. Chem.* **1985**, *24*, 576. (225) Kessler, J. E.; Knight, C. T. G.; Merbach, A. E. *Inorg. Chim. Acta* **1986**, *115*, 85.
- (226) Turin-Rossier, M.; Hugi Cleary, D.; Merbach, A. E. *Inorg. Chim. Acta* **1990**, *167*, 245.
- (227) Turin, E.; Nielson, R. M.; Merbach, A. E. *Inorg. Chim. Acta* **1987**, *134*, 67.
-
- (228) Ruzicka, S. J.; Merbach, A. E. *Inorg. Chim. Acta* **1976**, *20*, 221. (229) Ruzicka, S. J.; Merbach, A. E. *Inorg. Chim. Acta* **1977**, *22*, 191.
- (230) Knight, C. T. G.; Merbach, A. E. *J. Am. Chem. Soc.* **1984**, *106*, 804.
- (231) Frey, U.; Helm, L.; Merbach, A. E. *Helv. Chim. Acta* **1990**, *73*, 199.
- (232) Cross, R. J. *Adv. Inorg. Chem.* **1989**, *34*, 219.
- (233) Brønnum, B.; Johansen, H. S.; Skibsted, L. *Acta Chem. Scand.* **1989**, *43*, 975.
- (234) Hallinan, N.; Besanáon, V.; Forster, M.; Elbaze, G.; Ducommun, Y.; Merbach, A. E. *Inorg. Chem.* **1991**, *30*, 1112.
- (235) Helm, L.; Elding, L. I.; Merbach, A. E. *Helv. Chim. Acta* **1984**, *67*, 1453.
- (236) Frey, U.; Elmroth, S.; Moullet, B.; Elding, L. I.; Merbach, A. E. *Inorg. Chem.* **1991**, *30*, 5033.
- (237) Brønnum, B.; Johansen, H. S.; Skibsted, L. H. *Inorg. Chem.* **1992**, *31*, 3023.
- (238) Helm, L.; Elding, L. I.; Merbach, A. E. *Inorg. Chem.* **1985**, *24*, 1719.
- (239) Dunham, S. U.; Abbott, E. H. *Inorg. Chim. Acta* **2000**, *297*, 72.
- (240) Ducommun, Y.; Helm, L.; Merbach, A. E.; Hellquist, B.; Elding, L. I. *Inorg. Chem.* **1989**, *28*, 377.
- (241) Martinez, J. M.; Torrico, F.; Pappalardo, R. R.; Marcos, E. S. *J. Phys. Chem. B* **2004**, *108*, 15851.
- (242) Romeo, R.; Grassi, A.; Monsu Scolaro, L. *Inorg. Chem.* **1992**, *31*, 4383.
- (243) Frey, U.; Helm, L.; Merbach, A. E.; Romeo, R. *J. Am. Chem. Soc.* **1989**, *111*, 8161.
- (244) Berger, J.; Kotowski, M.; van Eldik, R.; Helm, L.; Merbach, A. E.; Frey, U. *Inorg. Chem.* **1989**, *28*, 3759. (245) Helm, L.; Merbach, A. E.; Kotowski, M.; van Eldik, R. *High-*
- *Pressure Res.* **1989**, *2*, 49. (246) Tubino, M.; Merbach, A. E. *Inorg. Chim. Acta* **1983**, *71*, 149.
-
- (247) Frey, U.; Grove, D. M.; van Koten, G. *Inorg. Chim. Acta* **1998**, *269*, 322.
- (248) Romeo, R.; Scolaro, L.; Nastasi, N.; Arena, G. *Inorg. Chem.* **1996**, *35*, 5087.
- (249) Cossy, C.; Barnes, A. C.; Enderby, J. E.; Merbach, A. E. *J. Chem. Phys.* **1989**, *90*, 3254.
- (250) Helm, L.; Merbach, A. E. *Eur. J. Solid State Inorg. Chem.* **1991**, *28*, 245.
- (251) Habenschuss, A.; Spedding, F. H. *J. Chem. Phys.* **1980**, *73*, 442.
-
- (252) Habenschuss, A.; Spedding, F. H. *J. Chem. Phys.* **1979**, *70*, 3758. (253) Yamaguchi, T.; Nomura, M.; Wakita, H.; Ohtaki, H. *J. Chem. Phys.* **1988**, *89*, 5153.
- (254) Spedding, F. H.; Cullen, P. F.; Habenschuss, A. *J. Phys. Chem.* **1974**, *78*, 1106.
- (255) Spedding, F. H.; Shiers, L. E.; Brown, M. A.; Derer, J. L.; Swanson, D. L.; Habenschuss, A. *J. Chem. Eng. Data* **1975**, *20*, 81.
- (256) Miyakawa, K.; Kaizu, Y.; Kobayashi, H. *J. Chem. Soc., Faraday Trans. 1* **1988**, *84*, 1517.
- (257) Laurenczy, G.; Merbach, A. E. *Helv. Chim. Acta* **1988**, *71*, 1971. (258) Fay, D. P.; Litchinsky, D.; Purdie, N. *J. Phys. Chem.* **1969**, *73*,
- 544. (259) Powell, D. H.; Merbach, A. E. *Magn. Reson. Chem.* **1994**, *32*,
- 739.
- (260) Caravan, P.; Merbach, A. E. *Chem. Commun.* **1997**, 2147. (261) Micskei, K.; Powell, D. H.; Helm, L.; Brücher, E.; Merbach, A. E. *Magn. Reson. Chem.* **1993**, *31*, 1011.
- (262) Cossy, C.; Helm, L.; Merbach, A. E. *Inorg. Chem.* **1988**, *27*, 1973.
- (263) Cossy, C.; Helm, L.; Merbach, A. E. *Inorg. Chem.* **1989**, *28*, 2699.
- (264) Cossy, C.; Helm, L.; Powell, D. H.; Merbach, A. E. *New J. Chem.*
- **1995**, *19*, 27.
- (265) Kowall, T.; Foglia, F.; Helm, L.; Merbach, A. E. *Chem.-Eur. J.* **1996**, *2*, 285.
- (266) Pisaniello, D. L.; Helm, L.; Meier, P. F.; Merbach, A. E. *J. Am. Chem. Soc.* **1983**, *105*, 4528. (267) Pisaniello, D. L.; Helm, L.; Zbinden, D.; Merbach, A. E. *Helv.*
- *Chim. Acta* **1983**, *66*, 1872.
- (268) Dessapt, R.; Helm, L.; Merbach, A. E. *J. Phys.: Condens. Matter* **2004**, *16*, S1027.
- (269) Lincoln, S. F.; White, A. H. *Inorg. Chim. Acta* **1990**, *168*, 265. (270) Pisaniello, D. L.; Lincoln, S. F.; Williams, A. F.; Jones, A. *Aust. J. Chem.* **1981**, *34*, 495.
-
- (271) Lincoln, S. F.; White, A. *Polyhedron* **1986**, *5*, 1351. (272) Lincoln, S. F.; Hounslow, A. M.; Jones, A. *Aust. J. Chem.* **1982**, *35*, 2393.
- (273) *The Chemistry of Contrast Agents in Medical Magnetic Resonance*
Imaging; Merbach, A. E., Tóth, É., Eds.; John Wiley & Sons:
Chichester, 2001 Chichester, 2001.
(274) Tóth, É.; Helm, L.; Merbach, A. E. In The Chemistry of Contrast
- (274) Tóth, E.; Helm, L.; Merbach, A. E. In *The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging*, 1st ed.; Merbach, A. E., Tóth, E., Eds.; John Wiley & Sons: Chichester, 2001. p 45.
- (275) Koenig, S. H.; Kellar, K. E. *Magn. Reson. Med.* **1995**, *34*, 227.
- (276) Luchinat, C. *Magn. Reson. Chem.* **1993**, *31*, S145. (277) Powell, D. H.; Ni Dhubhghaill, O. M.; Pubanz, D.; Helm, L.;
- Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E. *J. Am. Chem. Soc.* **1996**, *118*, 9333.
- (278) Borel, A.; Yerly, F.; Helm, L.; Merbach, A. E. *J. Am. Chem. Soc.* **2002**, *124*, 2042.
- (279) Micskei, K.; Helm, L.; Brücher, E.; Merbach, A. E. *Inorg. Chem.* **1993**, *32*, 3844.
- (280) Dunand, F. A.; Borel, A.; Helm, L. *Inorg. Chem. Commun.* **2002**, *5*, 811.
- (281) Botteman, F.; Nicolle, G. M.; Vander Elst, L.; Laurent, S.; Merbach, A. E.; Muller, R. N. *Eur. J. Inorg. Chem.* **2002**, 2686.
- (282) Gonzalez, G.; Powell, D. H.; Tissieres, V.; Merbach, A. E. *J. Phys. Chem.* **1994**, *98*, 53.
- (283) Laurent, S.; Vander Elst, L.; HouzÈ, S.; GuÈrit, N.; Muller, R. N. *Helv. Chim. Acta* **2000**, *83*, 394.
- (284) Pubanz, D.; Gonzalez, G.; Powell, D. H.; Merbach, A. E. *Inorg. Chem.* **1995**, *34*, 4447.
- (285) Laus, S.; Ruloff, R.; Tóth, É.; Merbach, A. E. *Chem.-Eur. J.* **2003**, *9*, 3555.
- (286) Burai, L.; Tóth, E.; Merbach, A. E. *J. Chem. Soc., Chem.* Commun. **2003**, 2680.
- (287) Cheng, T. H.; Lee, T. M.; Ou, M. H.; Li, C. R.; Liu, G. C.; Wang, Y. M. *Helv. Chim. Acta* **2002**, *85*, 1033.
- (288) Aime, S.; Botta, M.; Fasano, M.; Terreno, E. *Acc. Chem. Res.*
- **1999**, *32*, 941.

(289) Tóth, É.; Burai, L.; Brücher, E.; Merbach, A. E. *J. Chem. Soc.*,
 Dalton Trans, **1997**, 1587 *Dalton Trans.* **1997**, 1587.
- (290) Laurent, S.; Botteman, F.; Vander Elst, L.; Muller, R. N. *Eur. J. Inorg. Chem.* **2004**, 463.
- (291) Lee, T.-M.; Cheng, T. H.; Ou, M. H.; Chang, C. A.; Liu, G.-C.;
Wang, Y.-M. *Magn. Reson. Chem.* **2004**, *42*, 329.
(292) To`th, E.; Connac, F.; Helm, L.; Adzamli, K.; Merbach, A. E. *J.*
Riol. Inors Chem. **1998**, 3
- *Biol. Inorg. Chem.* **1998**, *3*, 606.
- (293) Aime, S.; Crich, S. G.; Gianolo, E.; Terreno, E.; Beltrami, A.; Uggeri, F. *Eur. J. Inorg. Chem.* **1998**, 1283.
- (294) Tóth, É.; Helm, L.; Kellar, K. E.; Merbach, A. E. *Chem.*-Eur. J. **1999**, *5*, 1202.
- (295) Tóth, É.; van Uffelen, I.; Helm, L.; Merbach, A. E.; Ladd, D.; Briley-Saebo, K.; Kellar, K. E. *Magn. Reson. Chem.* **1998**, *36*, S125.
- (296) To´th, EÄ .; Connac, F.; Adzamli, K.; Merbach, A. E. *Eur. J. Inorg. Chem.* **1998**, *12*, 2017.
- (297) Lammers, H.; Maton, F.; Pubanz, D.; van Laren, M. W.; van Bekkum, H.; Merbach, A. E.; Muller, R. N.; Peters, J. A. *Inorg. Chem.* **1997**, *36*, 2527.
- (298) Aime, S.; Barge, A.; Borel, A.; Botta, M.; Chemerisov, S.; Merbach, A. E.; Müller, U.; Pubanz, D. *Inorg. Chem.* 1997, 36, 5104.
- (299) Cheng, T. H.; Wang, Y. M.; Lin, K. T.; Liu, G. C. *J. Chem. Soc., Dalton Trans.* **2001**, 3357.
- (300) Ruloff, R.; Muller, R. N.; Pubanz, D.; Merbach, A. E. *Inorg. Chim. Acta* **1998**, *276*, 15.
- (301) Hajela, S.; Botta, M.; Giraudo, S.; Xu, J.; Raymond, K. N.; Aime, S. *J. Am. Chem. Soc.* **2000**, *122*, 11228.
- (302) Doble, D. M. J.; Botta, M.; Wang, J.; Aime, S.; Barge, A.; Raymond, K. N. *J. Am. Chem. Soc.* **2001**, *123*, 10758.
- (303) Thompson, M. K.; Botta, M.; Nicolle, G. M.; Helm, L.; Aime, S.; Merbach, A. E.; Raymond, K. N. *J. Am. Chem. Soc.* **2003**, *125*, 14274.
- (304) Sunderland, C. J.; Botta, M.; Aime, S.; Raymond, K. N. *Inorg. Chem.* **2001**, *40*, 6746.
- (305) Platas-Iglesias, C.; Mato-Iglesias, M.; Djanashvili, K.; Muller, R. N.; Vander Elst, L.; Peters, J. A.; de Blas, A.; Rodriguez-Blas, T. *Chem.* $-Eur.$ J. 2004, 10, 3579.
- (306) Tóth, É.; Helm, L.; Merbach, A. E.; Hedinger, R.; Hegetschweiler, K.; Ja´nossy, A. *Inorg. Chem.* **1998**, *37*, 4104.
- (307) Yerly, F.; Dunand, F. A.; Tóth, É.; Figueirinha, A.; Kovacs, Z.; Sherry, A. D.; Geraldes, C. F. G. C.; Merbach, A. E. *Eur. J. Inorg. Chem.* **2000**, *5*, 1001.
- (308) Tóth, É.; Ni Dhubhghaill, O. M.; Besson, G.; Helm, L.; Merbach, A. E. *Magn. Reson. Chem.* **1999**, *37*, 701.
- (309) Corsi, D. M.; Vander Elst, L.; Muller, R. N.; van Bekkum, H.; Peters, J. A. *Chem.* $-Eur.$ J. 2001, 7, 1383.
- (310) Botta, M.; Aime, S.; Barge, A.; Bobba, G.; Dickins, R. S.; Parker, D.; Terreno, E. *Chem.* $-Eur. J.$ **2003**, 9, 2102.
- (311) Botta, M.; Quinci, S.; Pozzi, G.; Marzanni, G.; Pagliarin, R.; Barra, S.; Crich, S. G. *Org. Biomol. Chem.* **2004**, *2*, 570.
- (312) Congreve, A.; Parker, D.; Gianolio, E.; Botta, M. *Dalton Trans.* **2004**, 1441.
- (313) Ruloff, R.; Tóth, É.; Scopelliti, R.; Tripier, R.; Handel, H.; Merbach, A. E. *Chem. Commun.* **2002**, 2630.
- (314) Terreno, E.; Boniforte, P.; Botta, M.; Fedeli, F.; Milone, L.; Mortillaro, A.; Aime, S. *Eur. J. Inorg. Chem.* **2003**, 3530.
- (315) Woods, M.; Kovacs, H.; Zhang, H.; Sherry, A. D. *Angew. Chem., Int. Ed.* **2003**, *42*, 5889.
- (316) Andre, J. P.; Maecke, H. R.; Tóth, É.; Merbach, A. E. *J. Biol. Inorg. Chem.* **1999**, *4*, 341.
- (317) Tóth, E.; Pubanz, D.; Vauthey, S.; Helm, L.; Merbach, A. E.
Chem.—Eur. J. **1996**, 2, 1607.
- (318) Andre, J. P.; Tóth, É.; Fischer, H.; Seelig, A.; Maecke, H. R.; Merbach, A. E. *Chem.* $-Eur. J.$ **1999**, 5, 2977.
- (319) Nicolle, G. M.; Tóth, E.; Eisenwiener, K.-P.; Mäcke, H. R.; Merbach, A. E. *J. Biol. Inorg. Chem.* **2002**, 7, 757.
- (320) Nicolle, G. M.; Tóth, E.; Schmitt-Willich, H.; Raduchel, B.; Merbach, A. E. *Chem.*—Eur. J. **2002**, *8*, 1040.
- (321) Aime, S.; Barge, A.; Bruce, J. I.; Botta, M.; Howard, J. A. K.; Moloney, J. M.; Parker, D.; De Sousa, A. S.; Woods, M. *J. Am. Chem. Soc.* **1999**, *121*, 5762.
- (322) Zhang, S.; Wu, K.; Sherry, A. D. *J. Am. Chem. Soc.* **2002**, *124*, 4226.
- (323) Zhang, S.; Sherry, A. D. *J. Solid State Chem.* **2003**, *171*, 38.
- (324) Tóth, E.; Vauthey, S.; Pubanz, D.; Merbach, A. E. *Inorg. Chem.*
1996–35–3375 **1996**, *35*, 3375.
- (325) Woods, M.; Aime, S.; Botta, M.; Howard, J. A. K.; Moloney, J. M.; Navet, M.; Parker, D.; Port, M.; Rousseau, O. *J. Am. Chem. Soc.* **2000**, *122*, 9781.
- (326) Zhang, S.; Kovacs, Z.; Burgess, S.; Aime, S.; Terreno, E.; Sherry, A. D. *Chem.* $-Eur. J. 2001, 7, 288$.
- (327) Dunand, F. A.; Aime, S.; Merbach, A. E. *J. Am. Chem. Soc.* **2000**, *122*, 1506.
- (328) Dunand, F. A.; Dickins, R. S.; Parker, D.; Merbach, A. E. *Chem.*-*Eur. J.* **2001**, *7*, 5160.
- (329) Batsanov, A. S.; Beeby, A.; Bruce, J. I.; Howard, J. A. K.; Kenwright, A. M.; Parker, D. *J. Chem. Soc., Chem. Commun.* **1999**, 1011.
- (330) Aime, S.; Barge, A.; Delli-Castelli, D.; Fedeli, F.; Mortillaro, A.; Nielsen, F. U.; Terreno, E. *Magn. Reson. Med.* **2002**, *47*, 639.
- (331) Nicolle, G. M.; Yerly, F.; Imbert, D.; Böttger, U.; Bünzli, J.-C.; Merbach, A. E. *Chem.* $-Eur. J. 2003, 9, 5453.$
- (332) Zhang, S.; Matthew, M.; Woessner, D. E.; Lenkisnki, R. E.; Sherry, A. D. *Acc. Chem. Res.* **2003**, *36*, 783.
- (333) Aime, S.; Botta, M.; Crich, S. G.; Giovenzana, G. B.; Pagliarin, R.; Piccinini, M.; Sisti, M.; Terreno, E. *J. Biol. Inorg. Chem.* **1997**, *2*, 470.
- (334) Aime, S.; Botta, M.; Crich, S. G.; Giovenzana, G. B.; Pagliarin, R.; Sisti, M.; Terreno, E. *Magn. Reson. Chem.* **1998**, *36*, S200.
- (335) Burai, L.; Tóth, E.; Seibig, S.; Scopelliti, R.; Merbach, A. E.
Chem $-Eu$ r, J. 2000 6. 3761. *Chem.* $-Eur. J. 2000, 6, 3761.$
- (336) Seibig, S.; Tóth, É.; Merbach, A. E. *J. Am. Chem. Soc.* **2000**, *122*, 5822.
- (337) Botta, M.; Ravera, M.; Barge, A.; Bottaro, M.; Osella, D. *J. Chem. Soc., Dalton Trans.* **2003**, 1628.
- (338) Burai, L.; Scopelliti, R.; Tóth, É. J. Chem. Soc., Chem. Commun. **2002**, 2366.
- (339) Rast, S.; Borel, A.; Helm, L.; Belorizky, E.; Fries, P. H.; Merbach, A. E. *J. Am. Chem. Soc.* **2001**, *123*, 2637.
- (340) Rast, S.; Fries, P. H.; Belorizky, E. *J. Chem. Phys.* **2000**, *113*, 8724.
- (341) Szilagyi, E.; Tóth, É.; Brücher, E.; Merbach, A. E. *J. Chem. Soc.*, *Dalton Trans.* **1999**, 2481.
- (342) Tóth, E.; Burai, L.; Merbach, A. E. *Coord. Chem. Rev.* **2001**, 216–
217–363 *217*, 363.
- (343) Yee, E. L.; Gansow, O. A.; Weaver, M. J. *J. Am. Chem. Soc.* **1980**, *102*, 2278.
- (344) Burai, L.; Tóth, E.; Moreau, G.; Sour, A.; Scopelliti, R.; Merbach, A. E. *Chem.* $-Eur. J. 2003, 9, 1394.$
- (345) Farkas, I.; Ba´nyai, I.; Szabo´, Z.; Wahlgren, U.; Grenthe, I. *Inorg. Chem.* **2000**, *39*, 799.
- (346) Vallet, V.; Wahlgren, U.; Schimmelpfennig, B.; Szabo, Z.; Gren-the, I. *J. Am. Chem. Soc.* **2001**, *123*, 11999.
- (347) Bardin, N.; Rubini, P.; Madic, C. *Radiochim. Acta* **1998**, *83*, 189. (348) Farkas, I.; Grenthe, I.; Ba´nyai, I. *J. Phys. Chem. A* **2000**, *104*,
- 1201. (349) Yang, T.; Tsushima, S.; Suzuki, H. *J. Phys. Chem. A* **2001**, *105*,
- 10439.
- (350) Szabo, Z.; Glaser, J.; Grenthe, I. *Inorg. Chem.* **1996**, *35*, 2036.
- (351) Moll, H.; Denecke, M. A.; Jalilehvand, F.; Sandström, M.; Grenthe, I. *Inorg. Chem.* **1999**, *38*, 1795.

CR030726O